About the congruences of two-generated monoid
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 1, pp. 14-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The congruences of two-generated monoid which generated by pair of words of length 2 are considered over two-letter alphabet. It is shown that number of equivalence classes for words of length $n$ is equal to $n+1$. The number of words in each class is found.
@article{ISU_2010_10_1_a2,
     author = {L. A. Kudryavtseva},
     title = {About the congruences of two-generated monoid},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {14--18},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a2/}
}
TY  - JOUR
AU  - L. A. Kudryavtseva
TI  - About the congruences of two-generated monoid
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 14
EP  - 18
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a2/
LA  - ru
ID  - ISU_2010_10_1_a2
ER  - 
%0 Journal Article
%A L. A. Kudryavtseva
%T About the congruences of two-generated monoid
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 14-18
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a2/
%G ru
%F ISU_2010_10_1_a2
L. A. Kudryavtseva. About the congruences of two-generated monoid. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 1, pp. 14-18. http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a2/

[1] Book R. V., “A note on special Thue systems with a single defining relation”, Math. Systems Theory, 16 (1983), 57–60 | DOI | MR | Zbl

[2] Otto F., Wrathall C., “A note on Thue systems with a single defining relation”, Math. Systems Theory, 18 (1985), 135–143 | DOI | MR | Zbl

[3] Lyapin E. S., Polugruppy, Gos. izd-vo fiz.-mat. lit., M., 1960, 592 pp. | MR