Spline-collocation method and its modification in the problems of static bending of thin orthotropic rectangular plate
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 1, pp. 78-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical method for determining the stress-strain state (SSS) of a bended thin rectangular plate with non-classical boundary conditions is presented. Numerical results for three different materials can be used to estimate the influence of the material anisotropy and boundary conditions on its SSS.
@article{ISU_2010_10_1_a12,
     author = {O. M. Romakina and Yu. V. Shevtsova},
     title = {Spline-collocation method and its modification in the problems of static bending of thin orthotropic rectangular plate},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {78--82},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a12/}
}
TY  - JOUR
AU  - O. M. Romakina
AU  - Yu. V. Shevtsova
TI  - Spline-collocation method and its modification in the problems of static bending of thin orthotropic rectangular plate
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 78
EP  - 82
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a12/
LA  - ru
ID  - ISU_2010_10_1_a12
ER  - 
%0 Journal Article
%A O. M. Romakina
%A Yu. V. Shevtsova
%T Spline-collocation method and its modification in the problems of static bending of thin orthotropic rectangular plate
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 78-82
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a12/
%G ru
%F ISU_2010_10_1_a12
O. M. Romakina; Yu. V. Shevtsova. Spline-collocation method and its modification in the problems of static bending of thin orthotropic rectangular plate. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 1, pp. 78-82. http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a12/

[1] Lekhnitskii S. G., Anizotropnye plastinki, GITTL, M., 1957, 463 pp.

[2] Grigorenko Ya. M., Kryukov N. N., “Reshenie zadach teorii plastin i obolochek s primeneniem splain-funktsii (Obzor)”, Prikl. mekhanika, 31:6 (1995), 3–26 | MR

[3] Zavyalov Yu. S., Kvasov Yu. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR

[4] Nedorezov P. F., Shevtsova Yu. V., Romakina O. M., “Modifitsirovannyi metod splain-kollokatsii v zadachakh izgiba pryamougolnykh plastinok”, Matematicheskoe modelirovanie i kraevye zadachi, Tr. Vtoroi Vseros. nauch. konf., Ch. 1, Izd-vo Samar. gos. tekhn. un-ta, Samara, 2005, 203–209

[5] Shevtsova Yu. V., “Primenenie modifitsirovannogo metoda splain-kollokatsii v zadachakh izgiba ortotropnykh pryamougolnykh plastinok”, Problemy prochnosti elementov konstruktsii pod deistviem nagruzok i rabochikh sred, Sb. nauch. tr., Izd-vo Sarat. gos. tekhn. un-ta, Saratov, 2005, 146–149