On the steady transverse vibrations of a rectangular orthotropic plate
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 1, pp. 71-77
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of the steady transverse vibrations of a rectangular orthotropic plate under the classical Kirchhoff theory assumptions is considered. Two-dimensional problemis reduced to one-dimensional via themodified spline-collocation method.One-dimensional problem is numerically solved with the stable discrete orthogonalization method. Numerical results for three resonance frequencies and plots for deformed middle-surface are presented for three types of boundary conditions on the edges.
@article{ISU_2010_10_1_a11,
author = {O. M. Romakina},
title = {On the steady transverse vibrations of a~rectangular orthotropic plate},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {71--77},
year = {2010},
volume = {10},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a11/}
}
TY - JOUR AU - O. M. Romakina TI - On the steady transverse vibrations of a rectangular orthotropic plate JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2010 SP - 71 EP - 77 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a11/ LA - ru ID - ISU_2010_10_1_a11 ER -
O. M. Romakina. On the steady transverse vibrations of a rectangular orthotropic plate. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 1, pp. 71-77. http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a11/
[1] Lekhnitskii S. G., Anizotropnye plastinki, GITTL, M., 1957, 463 pp.
[2] Nedorezov P. F., Shevtsova Yu. V., Romakina O. M., “Modifitsirovannyi metod splain-kollokatsii v zadachakh izgiba pryamougolnykh plastinok”, Matematicheskoe modelirovanie i kraevye zadachi, Tr. Vtoroi Vseros. nauch. konf., Ch. 1, Samar. gos. tekhn. un-ta, Samara, 2005, 203–209
[3] Zavyalov Yu. S., Kvasov Yu. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR
[4] Ambartsumyan S. A., Teoriya anizotropnykh plastin, Nauka, M., 1967, 268 pp. | MR