On the steady transverse vibrations of a~rectangular orthotropic plate
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 1, pp. 71-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the steady transverse vibrations of a rectangular orthotropic plate under the classical Kirchhoff theory assumptions is considered. Two-dimensional problemis reduced to one-dimensional via themodified spline-collocation method.One-dimensional problem is numerically solved with the stable discrete orthogonalization method. Numerical results for three resonance frequencies and plots for deformed middle-surface are presented for three types of boundary conditions on the edges.
@article{ISU_2010_10_1_a11,
     author = {O. M. Romakina},
     title = {On the steady transverse vibrations of a~rectangular orthotropic plate},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {71--77},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a11/}
}
TY  - JOUR
AU  - O. M. Romakina
TI  - On the steady transverse vibrations of a~rectangular orthotropic plate
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 71
EP  - 77
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a11/
LA  - ru
ID  - ISU_2010_10_1_a11
ER  - 
%0 Journal Article
%A O. M. Romakina
%T On the steady transverse vibrations of a~rectangular orthotropic plate
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 71-77
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a11/
%G ru
%F ISU_2010_10_1_a11
O. M. Romakina. On the steady transverse vibrations of a~rectangular orthotropic plate. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 1, pp. 71-77. http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a11/

[1] Lekhnitskii S. G., Anizotropnye plastinki, GITTL, M., 1957, 463 pp.

[2] Nedorezov P. F., Shevtsova Yu. V., Romakina O. M., “Modifitsirovannyi metod splain-kollokatsii v zadachakh izgiba pryamougolnykh plastinok”, Matematicheskoe modelirovanie i kraevye zadachi, Tr. Vtoroi Vseros. nauch. konf., Ch. 1, Samar. gos. tekhn. un-ta, Samara, 2005, 203–209

[3] Zavyalov Yu. S., Kvasov Yu. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR

[4] Ambartsumyan S. A., Teoriya anizotropnykh plastin, Nauka, M., 1967, 268 pp. | MR