The problem of convergence in point trigonometric interpolation process of Lagrange
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 1, pp. 9-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analogue of the characteristic of R. Salem is obtained for a trigonometric Lagrange interpolation process on the matrix of equally spaced nodes.
@article{ISU_2010_10_1_a1,
     author = {L. V. Borisova and A. V. Shatalina},
     title = {The problem of convergence in point trigonometric interpolation process of {Lagrange}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {9--14},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a1/}
}
TY  - JOUR
AU  - L. V. Borisova
AU  - A. V. Shatalina
TI  - The problem of convergence in point trigonometric interpolation process of Lagrange
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 9
EP  - 14
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a1/
LA  - ru
ID  - ISU_2010_10_1_a1
ER  - 
%0 Journal Article
%A L. V. Borisova
%A A. V. Shatalina
%T The problem of convergence in point trigonometric interpolation process of Lagrange
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 9-14
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a1/
%G ru
%F ISU_2010_10_1_a1
L. V. Borisova; A. V. Shatalina. The problem of convergence in point trigonometric interpolation process of Lagrange. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 1, pp. 9-14. http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a1/

[1] Bernshtein S. N., “Neskolko zamechanii ob interpolirovanii”, Sobr. soch.: V 3 t, v. 1, M., 1952, 253–263

[2] Berman D. L., “Skhodimost interpolyatsionnogo protsessa Lagranzha, postroennogo dlya absolyutno nepreryvnykh funktsii i funktsii s ogranichennym izmeneniem”, Dokl. AN SSSR, 112:1 (1953), 9–12

[3] Nevai G. P., “Zamechaniya ob interpolirovanii”, Acta Math. Acad. Sci. Hung., 25:1–2 (1974), 123–144 | DOI | MR | Zbl

[4] Privalov A. A., “O ravnomernoi skhodimosti interpolyatsionnykh protsessov Lagranzha”, Mat. zametki, 39:2 (1986), 228–244 | MR | Zbl

[5] Salem R., Acta Sci. et. Ind. Paris, 1234 (1940), 862

[6] Bari N. K., Trigonometricheskie ryady, M., 1961 | MR

[7] Uitekker E. T., Vatson D. N., Kurs sovremennogo analiza: V 2 t., v. 2, M., 1963