On inverse problem for Sturm–Liouville operator with discontinuous coefficients
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 1, pp. 3-9 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper uniqueness of reconstruction of the Sturm–Liouville operator with discontinuous coefficients by spectral data is proved and algorithm of construction of the potential is provided.
@article{ISU_2010_10_1_a0,
     author = {E. N. Akhmedova and I. M. Huseynov},
     title = {On inverse problem for {Sturm{\textendash}Liouville} operator with discontinuous coefficients},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {3--9},
     year = {2010},
     volume = {10},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a0/}
}
TY  - JOUR
AU  - E. N. Akhmedova
AU  - I. M. Huseynov
TI  - On inverse problem for Sturm–Liouville operator with discontinuous coefficients
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 3
EP  - 9
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a0/
LA  - ru
ID  - ISU_2010_10_1_a0
ER  - 
%0 Journal Article
%A E. N. Akhmedova
%A I. M. Huseynov
%T On inverse problem for Sturm–Liouville operator with discontinuous coefficients
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 3-9
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a0/
%G ru
%F ISU_2010_10_1_a0
E. N. Akhmedova; I. M. Huseynov. On inverse problem for Sturm–Liouville operator with discontinuous coefficients. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a0/

[1] Akhmedova E.N., “The definition of one class of Sturm–Liouville operators with discontinuous coefficients by Weyl function”, Proc. of IMM of NAS of Azerbaijan, XXII(XXX) (2005), 3–8 | MR | Zbl

[2] Gasymov M.G., “Pryamye i obratnye zadachi spektralnogo analiza dlya odnogo klassa uravnenii s razryvnymi koeffitsientami”, Neklassicheskie metody v geofizike, Materialy Mezhdunar. konf. (Novosibirsk), 1977, 37–44

[3] Guseinov I.M., Pashaev R.T., “Ob odnoi obratnoi zadache dlya differentsialnogo uravneniya vtorogo poryadka”, UMN, 57:3 (2002), 147–148 | DOI | MR | Zbl

[4] Yurko V.A., Vvedenie v teoriyu obratnykh spektralnykh zadach, M., 2007, 384 pp.

[5] Levitan B.M., Gasymov M.G., “Opredelenie differentsialnogo operatora po dvum spektram”, UMN, 19:2 (1964), 3–63 | MR | Zbl

[6] Marchenko V.A., Operatory Shturma–Liuvillya i ikh prilozheniya, Kiev, 1977, 331 pp. | MR

[7] Akhmedova E.N., “On representation of solution of Sturm–Liouville equation with discontinuous coefficients”, Proc. of IMM of NAS of Azerbaijan, XVI(XXIV) (2002), 5–9 | MR | Zbl

[8] Akhmedova E.N., Huseynov H.M., “On eigenvalues and eigenfunctions of one class of Sturm–Liouville operators with discontinuous coefficients”, Transactions of NAS of Azerbaijan, XXIII:4 (2003), 7–18 | MR | Zbl