Numerical study of stress-strain state of a~thin anisotropic rectangular plate
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 4, pp. 142-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

Static bending of a thin rectangular anisotropic plate is considered in the framework of Kirchhoff hypotheses. At each point of the plate there is one plane of elastic symmetry parallel to the middle plane of the plate. It is assumed that the type of boundary conditions does not change along each of the straight sides. By applying of a modified method of spline collocation the two- dimensional boundary value problem for the determination of deflection is reduced to a boundary value problem for the system of ordinary differential equations, which is solved numerically. The results of numerical calculations for two variants of the boundary conditions on the contour of the plate are presented.
@article{ISU_2009_9_4_a9,
     author = {P. F. Nedorezov},
     title = {Numerical study of stress-strain state of a~thin anisotropic rectangular plate},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {142--148},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_4_a9/}
}
TY  - JOUR
AU  - P. F. Nedorezov
TI  - Numerical study of stress-strain state of a~thin anisotropic rectangular plate
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2009
SP  - 142
EP  - 148
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2009_9_4_a9/
LA  - ru
ID  - ISU_2009_9_4_a9
ER  - 
%0 Journal Article
%A P. F. Nedorezov
%T Numerical study of stress-strain state of a~thin anisotropic rectangular plate
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2009
%P 142-148
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2009_9_4_a9/
%G ru
%F ISU_2009_9_4_a9
P. F. Nedorezov. Numerical study of stress-strain state of a~thin anisotropic rectangular plate. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 4, pp. 142-148. http://geodesic.mathdoc.fr/item/ISU_2009_9_4_a9/

[1] Lekhnitskii S. G., Anizotropnye plastinki, GITTL, M., 1957, 463 pp.

[2] Nedorezov P. F., Shevtsova Yu. V., Romakina O. M., “Modifitsirovannyi metod splain-kollokatsii v zadachakh izgiba pryamougolnykh plastinok”, Matematicheskoe modelirovanie i kraevye zadachi, Tr. Vtoroi Vseros. nauch. konf., Ch. 1, SamGTU, Samara, 2005, 203–209

[3] Grigorenko Ya. M., Kryukov N. N., “Reshenie zadach teorii plastin i obolochek s primeneniem splain-funktsii (Obzor)”, Prikl. mekhanika, 31:6 (1995), 3–26 | MR

[4] Zavyalov Yu. S., Kvasov Yu. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR

[5] Shevtsova Yu. V., “Primenenie modifitsirovannogo metoda splain-kollokatsii v zadachakh izgiba ortotropnykh pryamougolnykh plastinok”, Problemy prochnosti elementov konstruktsii pod deistviem nagruzok i rabochikh sred: Sb. nauch. tr., Izd-vo Sarat. gos. tekhn. un-ta, Saratov, 2005, 146–149

[6] Ambartsumyan S. A., Teoriya anizotropnykh plastin, Nauka, M., 1967, 268 pp. | MR