Coupled dynamic problems of hyperbolic thermoelasticity
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 4, pp. 94-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper in the framework of the linear non-dissipative coupled thermoelasticity (GNII, hyperbolic thermoelasticity), treating the heat transport as propagation with finite speed of undamped waves of second sound, harmonic coupled thermoelastic waves propagating in an infinite free from tractions thermoisolated cylinder are studied.Dispersion relation is derived for this type of thermoelastic waves for an arbitrary azimuthal order. Numerical results for wave numbers depending on frequency are obtained. Special attention is paid to the waves of the second azimuthal order. The study follows investigation of weak discontinuities propagation in GNII media by the Thomas–Hadamard technique and analysis of plane harmonic thermoelastic coupled waves.
@article{ISU_2009_9_4_a6,
     author = {V. A. Kovalev and Yu. N. Radayev and D. A. Semenov},
     title = {Coupled dynamic problems of hyperbolic thermoelasticity},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {94--127},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_4_a6/}
}
TY  - JOUR
AU  - V. A. Kovalev
AU  - Yu. N. Radayev
AU  - D. A. Semenov
TI  - Coupled dynamic problems of hyperbolic thermoelasticity
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2009
SP  - 94
EP  - 127
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2009_9_4_a6/
LA  - ru
ID  - ISU_2009_9_4_a6
ER  - 
%0 Journal Article
%A V. A. Kovalev
%A Yu. N. Radayev
%A D. A. Semenov
%T Coupled dynamic problems of hyperbolic thermoelasticity
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2009
%P 94-127
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2009_9_4_a6/
%G ru
%F ISU_2009_9_4_a6
V. A. Kovalev; Yu. N. Radayev; D. A. Semenov. Coupled dynamic problems of hyperbolic thermoelasticity. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 4, pp. 94-127. http://geodesic.mathdoc.fr/item/ISU_2009_9_4_a6/

[1] Novatskii V., Voprosy termouprugosti, Izd-vo AN SSSR, M., 1962, 364 pp.

[2] Novatskii V., Dinamicheskie zadachi termouprugosti, Mir, M., 1970, 256 pp.

[3] Joseph D. D., “Heat waves”, Rev. Modern Physics, 61:1 (1989), 41–73 | DOI | MR | Zbl

[4] Green A. E., Naghdi P. M., “On undamped heat waves in an elastic solid”, J. Therm. Stress., 15 (1992), 253–264 | DOI | MR

[5] Green A. E., Naghdi P. M., “Thermoelasticity without energy dissipation”, J. Elasticity, 31 (1993), 189–208 | DOI | MR | Zbl

[6] Bargmann S., Steinmann P., “Theoretical and computational aspects of non-classical thermoelasticity”, Comput. Methods Appl. Mech. Engrg., 196 (2006), 516–527 | DOI | MR | Zbl

[7] Kalpakides V. K., Maugin G. A., “Canonical formulation and conservation laws of thermoelasticity without dissipation”, Reports in Mathematical Physics, 53 (2004), 371–391 | DOI | MR | Zbl

[8] Puri P., Jordan P. M., “On the propagation of plane waves in type-III thermoelastic media”, Proc. R. Soc. Lond. A, 460 (2004), 203–3221 | DOI | MR

[9] Pochhammer L., “Uber Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiszylinder”, J. reine angew. Math., 81 (1876), 324–336

[10] Chree C., “The equations of an isotropic elastic solid in polar and cylindrical coordinates: Their solution and application”, Trans. Cambridge Philos. Soc., 14 (1889), 250–369

[11] Sneddon I. N., Berri D. S., Klassicheskaya teoriya uprugosti, Fizmatlit, M., 1961, 220 pp. | MR

[12] Kolskii G., Volny napryazheniya v tverdykh telakh, Izd-vo inostr. lit., M., 1955, 192 pp.

[13] Love A. E. H., A treatise on the mathematical theory of elasticity, Dover Publications, N.Y., 1944, 644 pp. | MR | Zbl

[14] Bancroft D., “The velocity of longitudinal waves in cylindrical bars”, Phys. Rev., 59 (1941), 588–593 | DOI

[15] Hudson G. E., “Dispersion of elastic waves in solid circular cylinders”, Phys. Rev., 63 (1943), 46–51 | DOI

[16] Miklowitz J., The theory of elastic waves and waveguides, North-Holland Publishing Company, Amsterdam, N.Y., Oxford, 1978, 618 pp. | MR

[17] Graff K. F., Wave motion in elastic solids, Dover Publications, N.Y., 1991, 649 pp.