On determinant zeros of boolean matrices
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 3, pp. 56-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of exteriority and interiority of square matrices with elements from arbitrary Boolean algebra are studied in this paper. The exterior and interior parts form a degenerate part of a matrix with zero determinant. It is shown, in particular, that the set of exterior parts is a normal set in the Boolean algebra of all Boolean square matrices and it is a lower semilattice. The set of interior parts is an upper semilattice. Moreover linear combinations and even polynomials of the interiorities also belong to it.
@article{ISU_2009_9_3_a9,
     author = {V. B. Poplavskii},
     title = {On determinant zeros of boolean matrices},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {56--61},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a9/}
}
TY  - JOUR
AU  - V. B. Poplavskii
TI  - On determinant zeros of boolean matrices
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2009
SP  - 56
EP  - 61
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a9/
LA  - ru
ID  - ISU_2009_9_3_a9
ER  - 
%0 Journal Article
%A V. B. Poplavskii
%T On determinant zeros of boolean matrices
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2009
%P 56-61
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a9/
%G ru
%F ISU_2009_9_3_a9
V. B. Poplavskii. On determinant zeros of boolean matrices. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 3, pp. 56-61. http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a9/

[1] Poplavskii V. B., “O razlozhenii opredelitelei bulevykh matrits”, Fundamentalnaya i prikladnaya matematika, 13:4 (2007), 199–223 | MR

[2] Poplavskii V. B., “Ob'emy i opredeliteli stepenei tranzitivnykh i refleksivnykh bulevykh otnoshenii na konechnykh mnozhestvakh”, Izv. Tulsk. gosun-ta. Ser. Matematika. Mekhanika. Informatika, 10:1 (2004), 134–141 | MR

[3] Poplavskii V. B., “O rangakh, klassakh Grina i teorii opredelitelei bulevykh matrits”, Diskret. mat., 20:4 (2008), 42–60 | DOI | MR | Zbl

[4] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, Nauka, M., 1982 | MR | Zbl

[5] Mink Kh., Permanenty, Mir, M., 1982 | MR

[6] Vladimirov D. A., Bulevy algebry, Nauka, M., 1969 | MR

[7] Golan J. S., Semirings and their Applications, Kluwer Academic Publishers, Dordrecht, 1999 | MR

[8] Reutenauer C., Straubing H., “Inversion of matrices over a commutative semiring”, J. of Algebra, 88 (1984), 350–360 | DOI | MR | Zbl