On determinant zeros of boolean matrices
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 3, pp. 56-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The properties of exteriority and interiority of square matrices with elements from arbitrary Boolean algebra are studied in this paper. The exterior and interior parts form a degenerate part of a matrix with zero determinant. It is shown, in particular, that the set of exterior parts is a normal set in the Boolean algebra of all Boolean square matrices and it is a lower semilattice. The set of interior parts is an upper semilattice. Moreover linear combinations and even polynomials of the interiorities also belong to it.
@article{ISU_2009_9_3_a9,
     author = {V. B. Poplavskii},
     title = {On determinant zeros of boolean matrices},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {56--61},
     year = {2009},
     volume = {9},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a9/}
}
TY  - JOUR
AU  - V. B. Poplavskii
TI  - On determinant zeros of boolean matrices
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2009
SP  - 56
EP  - 61
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a9/
LA  - ru
ID  - ISU_2009_9_3_a9
ER  - 
%0 Journal Article
%A V. B. Poplavskii
%T On determinant zeros of boolean matrices
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2009
%P 56-61
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a9/
%G ru
%F ISU_2009_9_3_a9
V. B. Poplavskii. On determinant zeros of boolean matrices. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 3, pp. 56-61. http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a9/

[1] Poplavskii V. B., “O razlozhenii opredelitelei bulevykh matrits”, Fundamentalnaya i prikladnaya matematika, 13:4 (2007), 199–223 | MR

[2] Poplavskii V. B., “Ob'emy i opredeliteli stepenei tranzitivnykh i refleksivnykh bulevykh otnoshenii na konechnykh mnozhestvakh”, Izv. Tulsk. gosun-ta. Ser. Matematika. Mekhanika. Informatika, 10:1 (2004), 134–141 | MR

[3] Poplavskii V. B., “O rangakh, klassakh Grina i teorii opredelitelei bulevykh matrits”, Diskret. mat., 20:4 (2008), 42–60 | DOI | MR | Zbl

[4] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, Nauka, M., 1982 | MR | Zbl

[5] Mink Kh., Permanenty, Mir, M., 1982 | MR

[6] Vladimirov D. A., Bulevy algebry, Nauka, M., 1969 | MR

[7] Golan J. S., Semirings and their Applications, Kluwer Academic Publishers, Dordrecht, 1999 | MR

[8] Reutenauer C., Straubing H., “Inversion of matrices over a commutative semiring”, J. of Algebra, 88 (1984), 350–360 | DOI | MR | Zbl