Obstructions to embedding of matrix algebra bundles into a trivial one
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 3, pp. 27-33
Cet article a éte moissonné depuis la source Math-Net.Ru
Topological obstructions to embedding of an $M_k(\mathbb C)$-bundle into a trivial $M_{kl}(\mathbb C)$-bundle under the condition $(k,l)=1$ are studied. The relation of this problem to the theory of bundles with a structure groupoid is described.
@article{ISU_2009_9_3_a4,
author = {A. V. Ershov},
title = {Obstructions to embedding of matrix algebra bundles into a~trivial one},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {27--33},
year = {2009},
volume = {9},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a4/}
}
TY - JOUR AU - A. V. Ershov TI - Obstructions to embedding of matrix algebra bundles into a trivial one JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2009 SP - 27 EP - 33 VL - 9 IS - 3 UR - http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a4/ LA - ru ID - ISU_2009_9_3_a4 ER -
A. V. Ershov. Obstructions to embedding of matrix algebra bundles into a trivial one. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 3, pp. 27-33. http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a4/
[1] Pirs R., Assotsiativnye algebry, Mir, M., 1986, 543 pp. | MR
[2] Karubi M., K-teoriya. Vvedenie, Mir, M., 1981, 360 pp. | MR
[3] Peterson F. P., “Some remarks on Chern classes”, Annals of Math., 69 (1959), 414–420 | DOI | MR | Zbl
[4] Ershov A. V., “A generalization of the topological Brauer group”, J. of K-theory: K-theory and its Applications to Algebra, Geometry and Topology, 2, Spec. Iss. 03 (2008), 407–444 | DOI | MR | Zbl
[5] Connes A., Noncommutative geometry, Academic Press, N.Y., 1994, 661 pp. | MR | Zbl
[6] Ershov A. V., Topological obstructions to embedding of a matrix algebra bundle into a trivial one, arXiv: 0807.3544