Obstructions to embedding of matrix algebra bundles into a~trivial one
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 3, pp. 27-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

Topological obstructions to embedding of an $M_k(\mathbb C)$-bundle into a trivial $M_{kl}(\mathbb C)$-bundle under the condition $(k,l)=1$ are studied. The relation of this problem to the theory of bundles with a structure groupoid is described.
@article{ISU_2009_9_3_a4,
     author = {A. V. Ershov},
     title = {Obstructions to embedding of matrix algebra bundles into a~trivial one},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {27--33},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a4/}
}
TY  - JOUR
AU  - A. V. Ershov
TI  - Obstructions to embedding of matrix algebra bundles into a~trivial one
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2009
SP  - 27
EP  - 33
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a4/
LA  - ru
ID  - ISU_2009_9_3_a4
ER  - 
%0 Journal Article
%A A. V. Ershov
%T Obstructions to embedding of matrix algebra bundles into a~trivial one
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2009
%P 27-33
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a4/
%G ru
%F ISU_2009_9_3_a4
A. V. Ershov. Obstructions to embedding of matrix algebra bundles into a~trivial one. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 3, pp. 27-33. http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a4/

[1] Pirs R., Assotsiativnye algebry, Mir, M., 1986, 543 pp. | MR

[2] Karubi M., K-teoriya. Vvedenie, Mir, M., 1981, 360 pp. | MR

[3] Peterson F. P., “Some remarks on Chern classes”, Annals of Math., 69 (1959), 414–420 | DOI | MR | Zbl

[4] Ershov A. V., “A generalization of the topological Brauer group”, J. of K-theory: K-theory and its Applications to Algebra, Geometry and Topology, 2, Spec. Iss. 03 (2008), 407–444 | DOI | MR | Zbl

[5] Connes A., Noncommutative geometry, Academic Press, N.Y., 1994, 661 pp. | MR | Zbl

[6] Ershov A. V., Topological obstructions to embedding of a matrix algebra bundle into a trivial one, arXiv: 0807.3544