Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2009_9_3_a3, author = {V. I. Dolgov and Yu. I. Mitrophanov and E. S. Rogachko}, title = {Method for analysis of queueing networks with dynamic control of service rates}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {22--27}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a3/} }
TY - JOUR AU - V. I. Dolgov AU - Yu. I. Mitrophanov AU - E. S. Rogachko TI - Method for analysis of queueing networks with dynamic control of service rates JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2009 SP - 22 EP - 27 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a3/ LA - ru ID - ISU_2009_9_3_a3 ER -
%0 Journal Article %A V. I. Dolgov %A Yu. I. Mitrophanov %A E. S. Rogachko %T Method for analysis of queueing networks with dynamic control of service rates %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2009 %P 22-27 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a3/ %G ru %F ISU_2009_9_3_a3
V. I. Dolgov; Yu. I. Mitrophanov; E. S. Rogachko. Method for analysis of queueing networks with dynamic control of service rates. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 3, pp. 22-27. http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a3/
[1] Alidrisi M., “Linear programming model for the optimal control of a queueing network”, Intern. J. Syst. Sci., 18 (1987), 1079–1089 | DOI | MR | Zbl
[2] Azaron A., Ghomi S. M., “Optimal control of the service rates and arrivals in Jackson networks”, Eur. J. Oper. Res., 147:1 (2003), 17–31 | DOI | MR | Zbl
[3] Weber R. R., Stidham S., “Optimal control of service rates in networks of queues”, Advances in Applied Probability, 19 (1987), 202–218 | DOI | MR | Zbl
[4] Jo K. Y., “Decomposition approximation of queueing-network control models with tree structures”, Annals of Operations Research, 8 (1987), 117–132 | DOI
[5] Alidrisi M., “Optimal control of the service rate of an exponential queueing network using Markov decision theory”, Intern. J. Syst. Sci., 21 (1990), 2553–2563 | DOI | MR | Zbl
[6] Bruell S. C., Balbo G., Afshari P. V., “Mean value analysis of mixed, multiple class BCMP networks with load dependent service stations”, Performance Evaluation, 4 (1984), 241–260 | DOI | MR
[7] Mitra D., McKenna J., “Asymptotic expansions for closed Markovian networks with state-dependent service rates”, J. of the Association for Computing Machinery, 33:3 (1986), 568–592 | DOI | MR | Zbl
[8] Lyakhov A. I., “Asimptoticheskii analiz zamknutykh setei ocheredei, vklyuchayuschikh ustroistva s peremennoi intensivnostyu obsluzhivaniya”, Avtomatika i telemekhanika, 1997, no. 3, 131–143 | MR | Zbl
[9] Mandelbaum A., Massey W. A., Reiman M. I., “Strong approximations for Markovian service networks”, Queueing Systems, 30 (1998), 149–201 | DOI | MR | Zbl
[10] Mitrofanov Yu. I., Dolgov V. I., “Dinamicheskoe upravlenie intensivnostyami obsluzhivaniya v setyakh massovogo obsluzhivaniya”, AVT, 2008, no. 6, 44–56
[11] Barucha-Rid A. T., Elementy teorii markovskikh protsessov i ikh prilozheniya, Nauka, GRFML, M., 1969, 512 pp. | MR
[12] Mitrofanov Yu. I., Analiz setei massovogo obsluzhivaniya, Nauch. kniga, Saratov, 2005, 175 pp.