Method for analysis of queueing networks with dynamic control of service rates
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 3, pp. 22-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

Model of evolution and a method for analysis of closed exponential queueing networks with dynamic control of service rates are proposed. A method of computing of the stationary distribution and formulas for calculating of stationary characteristics of the networks are presented. An example of analysis of considered type queueing network is given. According to the results of analysis and simulation of this network the accuracy of this method is sufficient for practical application.
@article{ISU_2009_9_3_a3,
     author = {V. I. Dolgov and Yu. I. Mitrophanov and E. S. Rogachko},
     title = {Method for analysis of queueing networks with dynamic control of service rates},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {22--27},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a3/}
}
TY  - JOUR
AU  - V. I. Dolgov
AU  - Yu. I. Mitrophanov
AU  - E. S. Rogachko
TI  - Method for analysis of queueing networks with dynamic control of service rates
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2009
SP  - 22
EP  - 27
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a3/
LA  - ru
ID  - ISU_2009_9_3_a3
ER  - 
%0 Journal Article
%A V. I. Dolgov
%A Yu. I. Mitrophanov
%A E. S. Rogachko
%T Method for analysis of queueing networks with dynamic control of service rates
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2009
%P 22-27
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a3/
%G ru
%F ISU_2009_9_3_a3
V. I. Dolgov; Yu. I. Mitrophanov; E. S. Rogachko. Method for analysis of queueing networks with dynamic control of service rates. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 3, pp. 22-27. http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a3/

[1] Alidrisi M., “Linear programming model for the optimal control of a queueing network”, Intern. J. Syst. Sci., 18 (1987), 1079–1089 | DOI | MR | Zbl

[2] Azaron A., Ghomi S. M., “Optimal control of the service rates and arrivals in Jackson networks”, Eur. J. Oper. Res., 147:1 (2003), 17–31 | DOI | MR | Zbl

[3] Weber R. R., Stidham S., “Optimal control of service rates in networks of queues”, Advances in Applied Probability, 19 (1987), 202–218 | DOI | MR | Zbl

[4] Jo K. Y., “Decomposition approximation of queueing-network control models with tree structures”, Annals of Operations Research, 8 (1987), 117–132 | DOI

[5] Alidrisi M., “Optimal control of the service rate of an exponential queueing network using Markov decision theory”, Intern. J. Syst. Sci., 21 (1990), 2553–2563 | DOI | MR | Zbl

[6] Bruell S. C., Balbo G., Afshari P. V., “Mean value analysis of mixed, multiple class BCMP networks with load dependent service stations”, Performance Evaluation, 4 (1984), 241–260 | DOI | MR

[7] Mitra D., McKenna J., “Asymptotic expansions for closed Markovian networks with state-dependent service rates”, J. of the Association for Computing Machinery, 33:3 (1986), 568–592 | DOI | MR | Zbl

[8] Lyakhov A. I., “Asimptoticheskii analiz zamknutykh setei ocheredei, vklyuchayuschikh ustroistva s peremennoi intensivnostyu obsluzhivaniya”, Avtomatika i telemekhanika, 1997, no. 3, 131–143 | MR | Zbl

[9] Mandelbaum A., Massey W. A., Reiman M. I., “Strong approximations for Markovian service networks”, Queueing Systems, 30 (1998), 149–201 | DOI | MR | Zbl

[10] Mitrofanov Yu. I., Dolgov V. I., “Dinamicheskoe upravlenie intensivnostyami obsluzhivaniya v setyakh massovogo obsluzhivaniya”, AVT, 2008, no. 6, 44–56

[11] Barucha-Rid A. T., Elementy teorii markovskikh protsessov i ikh prilozheniya, Nauka, GRFML, M., 1969, 512 pp. | MR

[12] Mitrofanov Yu. I., Analiz setei massovogo obsluzhivaniya, Nauch. kniga, Saratov, 2005, 175 pp.