DDoS attack detection using fuzzy neural network
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 3, pp. 84-89
Cet article a éte moissonné depuis la source Math-Net.Ru
In this article we analyze SYN Flood type of DDoS attack. We suggest method to detect this attack using a fuzzy neural network. Also we introduce modified back-propagation algorithm for neural network teaching.
@article{ISU_2009_9_3_a15,
author = {I. I. Slepovichev and P. V. Irmatov and M. S. Komarova and A. A. Bezhin},
title = {DDoS attack detection using fuzzy neural network},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {84--89},
year = {2009},
volume = {9},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a15/}
}
TY - JOUR AU - I. I. Slepovichev AU - P. V. Irmatov AU - M. S. Komarova AU - A. A. Bezhin TI - DDoS attack detection using fuzzy neural network JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2009 SP - 84 EP - 89 VL - 9 IS - 3 UR - http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a15/ LA - ru ID - ISU_2009_9_3_a15 ER -
%0 Journal Article %A I. I. Slepovichev %A P. V. Irmatov %A M. S. Komarova %A A. A. Bezhin %T DDoS attack detection using fuzzy neural network %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2009 %P 84-89 %V 9 %N 3 %U http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a15/ %G ru %F ISU_2009_9_3_a15
I. I. Slepovichev; P. V. Irmatov; M. S. Komarova; A. A. Bezhin. DDoS attack detection using fuzzy neural network. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 3, pp. 84-89. http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a15/
[1] Paxson V., “Bro: A System for Detecting Network Intruders in Real-Time”, Computer Networks, 31 (1999), 2435–2463 | DOI
[2] SoftPerfect Network Protocol Analyzer – Network sniffer for Windows http://www.softperfect.com/ products/networksniffer/
[3] Kruglov V. V., Dli M. I., Golunov R. Yu., Nechetkaya logika i iskusstvennye neironnye seti, M., 2001, 224 pp.
[4] Rutkovskaya D., Pilinskii M., Rutkovskii L., Neironnye seti, geneticheskie algoritmy i nechetkie sistemy, M., 2006, 452 pp.
[5] Rumelhart D. E., Hinton G. E., Williams R. J., “Learning internal representations by error propagation”, Parallel Data Processing, 1 (1986), 318–362