Mathematical models of stability loss of nonuniform cylindrical shells because of nonuniform radial loading
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 3, pp. 79-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

The circular cylindrical shell with variable thickness along the axis of elongation is considered. The axisymmetric radial pressure along the axis of shell is suggested. The one of values (for the law of pressure variation) which effects the stability loss of shell is determinated.
@article{ISU_2009_9_3_a14,
     author = {\`E. V. Antonenko and T. E. Shulga},
     title = {Mathematical models of stability loss of nonuniform cylindrical shells because of nonuniform radial loading},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {79--83},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a14/}
}
TY  - JOUR
AU  - È. V. Antonenko
AU  - T. E. Shulga
TI  - Mathematical models of stability loss of nonuniform cylindrical shells because of nonuniform radial loading
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2009
SP  - 79
EP  - 83
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a14/
LA  - ru
ID  - ISU_2009_9_3_a14
ER  - 
%0 Journal Article
%A È. V. Antonenko
%A T. E. Shulga
%T Mathematical models of stability loss of nonuniform cylindrical shells because of nonuniform radial loading
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2009
%P 79-83
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a14/
%G ru
%F ISU_2009_9_3_a14
È. V. Antonenko; T. E. Shulga. Mathematical models of stability loss of nonuniform cylindrical shells because of nonuniform radial loading. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 3, pp. 79-83. http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a14/

[1] Elmros B. O., “Vypuchivanie tsilindricheskoi obolochki, podverzhennoi deistviyu neravnomernogo vneshnego davleniya”, Prikladnaya mekhanika, Tr. Amer. obschestva inzhenerov – mekhanikov, 4, Izd-vo inostr. lit., M., 1962, 27–31

[2] Mossakovskii V. I., Andreev L. V., Zyuzin V. A., “Nekotorye voprosy ustoichivosti tsilindricheskoi obolochki pod deistviem neravnomernogo davleniya”, V Vsesoyuz. konf. po teorii plastin i obolochek, Tez. dokl., Nauka, M., 1965, 47–51

[3] Kan S. N., Todchuk V. A., “Ustoichivost tsilindricheskoi obolochki pri deistvii peremennoi radialnoi nagruzki”, Izbrannye glavy po stroitelnoi mekhanike obolochek, v. V, Kharkov, 1965, 182–187

[4] Antonenko E. V., Khloptseva N. S., “Ustoichivost tsilindricheskikh obolochek peremennoi tolschiny pri deistvii naruzhnogo davleniya”, Tr. XXI Mezhdunar. konf. po teorii obolochek i plastin, Izd-vo Sarat. un-ta, Saratov, 2005, 7–13

[5] Aktualnye problemy mekhaniki obolochek, Tr. mezhdunar. konf., Novoe znanie, Kazan, 2000, 488 pp.

[6] Tovstik P. E., Ustoichivost tonkikh obolochek, Nauka, M., 1995, 308 pp. | MR | Zbl

[7] Antonenko E. V., “Svobodnye kolebaniya i ustoichivost obolochek s uprugimi kraevymi rebrami”, Prikladnaya mekhanika. Kiev, XI:6 (1975), 44–50

[8] Volmir A. S., Ustoichivost deformiruemykh sistem, Nauka, M., 1974, 640 pp.

[9] Kan S. N., Stroitelnaya mekhanika obolochek, Mashinostroenie, M., 1966, 508 pp.

[10] Prochnost. Ustoichivost. Kolebaniya: V 3 t., v. 3, Mashinostroenie, M., 1968, 568 pp.