Equilibrium in games with ordered outcomes
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 3, pp. 61-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some conditions of existence of equilibrium points in mixed extensions of games with ordered outcomes. Generalmethods for description of the set of equilibrium points and also for Nash equilibrium points are proposed.
@article{ISU_2009_9_3_a10,
     author = {V. V. Rozen},
     title = {Equilibrium in games with ordered outcomes},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {61--66},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a10/}
}
TY  - JOUR
AU  - V. V. Rozen
TI  - Equilibrium in games with ordered outcomes
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2009
SP  - 61
EP  - 66
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a10/
LA  - ru
ID  - ISU_2009_9_3_a10
ER  - 
%0 Journal Article
%A V. V. Rozen
%T Equilibrium in games with ordered outcomes
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2009
%P 61-66
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a10/
%G ru
%F ISU_2009_9_3_a10
V. V. Rozen. Equilibrium in games with ordered outcomes. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 3, pp. 61-66. http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a10/

[1] Rozen V. V., “Ob uporyadochennosti mnozhestva veroyatnostnykh mer”, Izv. vuzov. Ser. Matematika, 1988, no. 11, 72–74 | MR

[2] Rozen V. V., “Situatsii ravnovesiya v igrakh s uporyadochennymi iskhodami”, Kibernetika, 1989, no. 6, 98–104 | MR | Zbl

[3] Rozen V. V., “O merakh na uporyadochennykh mnozhestvakh”, Teoriya polugrupp i ee prilozheniya: Sb. nauch. tr., 11, Izd-vo Sarat. un-ta, Saratov, 1993, 35–39 | MR

[4] Rozen V. V., “Vlozheniya uporyadochennykh mnozhestv v uporyadochennye lineinye prostranstva”, Izv. vuzov. Ser. Matematika, 1998, no. 7(434), 32–38 | MR

[5] Rozen V. V., “Matematicheskie modeli prinyatiya reshenii na osnove chastichnoi uporyadochennosti iskhodov”, Tavricheskii vest. informatiki i matematiki, 2004, no. 1, 54–59

[6] Rozen V. V., “Prodolzhenie uporyadochennosti na mnozhestvo veroyatnostnykh mer”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 5 (2005), 61–70

[7] Rozen V. V., “Uporyadochenie veroyatnostnykh mer”, Sovremennye problemy differentsialnoi geometrii i obschei algebry, Tez. dokl. Mezhdunar. nauch. konf., posvyasch. 100-letiyu prof. V. V. Vagnera, Izd-vo Sarat. un-ta, Saratov, 2008, 52–59