Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2009_9_3_a10, author = {V. V. Rozen}, title = {Equilibrium in games with ordered outcomes}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {61--66}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a10/} }
V. V. Rozen. Equilibrium in games with ordered outcomes. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 3, pp. 61-66. http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a10/
[1] Rozen V. V., “Ob uporyadochennosti mnozhestva veroyatnostnykh mer”, Izv. vuzov. Ser. Matematika, 1988, no. 11, 72–74 | MR
[2] Rozen V. V., “Situatsii ravnovesiya v igrakh s uporyadochennymi iskhodami”, Kibernetika, 1989, no. 6, 98–104 | MR | Zbl
[3] Rozen V. V., “O merakh na uporyadochennykh mnozhestvakh”, Teoriya polugrupp i ee prilozheniya: Sb. nauch. tr., 11, Izd-vo Sarat. un-ta, Saratov, 1993, 35–39 | MR
[4] Rozen V. V., “Vlozheniya uporyadochennykh mnozhestv v uporyadochennye lineinye prostranstva”, Izv. vuzov. Ser. Matematika, 1998, no. 7(434), 32–38 | MR
[5] Rozen V. V., “Matematicheskie modeli prinyatiya reshenii na osnove chastichnoi uporyadochennosti iskhodov”, Tavricheskii vest. informatiki i matematiki, 2004, no. 1, 54–59
[6] Rozen V. V., “Prodolzhenie uporyadochennosti na mnozhestvo veroyatnostnykh mer”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 5 (2005), 61–70
[7] Rozen V. V., “Uporyadochenie veroyatnostnykh mer”, Sovremennye problemy differentsialnoi geometrii i obschei algebry, Tez. dokl. Mezhdunar. nauch. konf., posvyasch. 100-letiyu prof. V. V. Vagnera, Izd-vo Sarat. un-ta, Saratov, 2008, 52–59