Absolute convergence of single and double Fourier series on multiplicative systems
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 3, pp. 7-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two-dimensional analogs of famous Zygmund and Szasz tests for absolute convergence of Fourier–Vilenkin series are established. Also it is proved that two-dimensional Szasz test is the best possible in the certain sense.
@article{ISU_2009_9_3_a1,
     author = {S. S. Volosivets},
     title = {Absolute convergence of single and double {Fourier} series on multiplicative systems},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {7--14},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a1/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Absolute convergence of single and double Fourier series on multiplicative systems
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2009
SP  - 7
EP  - 14
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a1/
LA  - ru
ID  - ISU_2009_9_3_a1
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Absolute convergence of single and double Fourier series on multiplicative systems
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2009
%P 7-14
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a1/
%G ru
%F ISU_2009_9_3_a1
S. S. Volosivets. Absolute convergence of single and double Fourier series on multiplicative systems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 3, pp. 7-14. http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a1/

[1] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha, Nauka, M., 1987 | MR | Zbl

[2] Moricz F., “Approximation by double Walsh polynomials”, Intern. J. Math. Math. Sci., 15:2 (1992), 209–220 | DOI | MR | Zbl

[3] Zigmund A., Trigonometricheskie ryady, v. 1, Mir, M., 1965 | MR

[4] Szasz O., “Fourier series and mean moduli of continuity”, Trans. Amer. Math. Soc., 42:3 (1937), 366–395 | DOI | MR

[5] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinshtein A. I., Multiplikativnye sistemy funktsii i garmonicheskii analiz na nul-mernykh gruppakh, Elm, Baku, 1981 | MR

[6] Skhirtladze I. A., “Ob absolyutnoi skhodimosti ryadov Fure–Uolsha”, Soobsch. AN GSSR, 64:2 (1971), 273–276

[7] Skhirtladze I. A., “Ob absolyutnoi skhodimosti i summiruemosti prostykh i kratnykh ryadov Fure–Uolsha”, Soobsch. AN GSSR, 69:1 (1973), 17–20

[8] Tateoka J., “Absolute convergence of double Walsh–Fourier series”, Acta Sci. Math. (Szeged), 72:1–2 (2006), 101–115 | MR | Zbl

[9] Sunouchi G. I., “Notes on Fourier analysis. XI. On the absolute summability of Fourier series”, J. Math. Soc. Japan, 1:2 (1949), 122–129 | DOI | MR | Zbl

[10] Zhak I. E., Timan M. F., “O summirovanii dvoinykh ryadov”, Mat. sb., 35(77):1 (1954), 21–56 | MR | Zbl

[11] Volosivets S. S., “Priblizhenie funktsii ogranichennoi $p$-fluktuatsii polinomami po multiplikativnym sistemam”, Analysis Math., 21:1 (1995), 61–77 | DOI | MR | Zbl

[12] Izumi M., Izumi S., “On absolute convergence of Fourier series”, Arkiv för Matematik, 7:12 (1967), 177–184 | DOI | MR | Zbl