Recovering differential operators on a~bush-type graph
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 2, pp. 59-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

An inverse spectral problem is studied for Sturm–Liouville operators on arbitrary graphs with a cycle. A constructive procedure for the solution is provided and the uniquenness is established.
@article{ISU_2009_9_2_a9,
     author = {V. A. Yurko},
     title = {Recovering differential operators on a~bush-type graph},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {59--65},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a9/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - Recovering differential operators on a~bush-type graph
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2009
SP  - 59
EP  - 65
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a9/
LA  - ru
ID  - ISU_2009_9_2_a9
ER  - 
%0 Journal Article
%A V. A. Yurko
%T Recovering differential operators on a~bush-type graph
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2009
%P 59-65
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a9/
%G ru
%F ISU_2009_9_2_a9
V. A. Yurko. Recovering differential operators on a~bush-type graph. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 2, pp. 59-65. http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a9/

[1] Yurko V. A., Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007 | Zbl

[2] Belishev M. I., “Boundary spectral inverse problem on a class of graphs (trees) by the BC method”, Inverse Problems, 20 (2004), 647–672 | DOI | MR | Zbl

[3] Yurko V. A., “Inverse spectral problems for Sturm–Liouville operators on graphs”, Inverse Problems, 21 (2005), 1075–1086 | DOI | MR | Zbl

[4] Yurko V. A., “Recovering differential pencils on compact graphs”, J. Diff. Equations, 244 (2008), 431–443 | DOI | MR | Zbl

[5] Yurko V. A., “Obratnye zadachi dlya differentsialnykh operatorov proizvolnykh poryadkov na derevyakh”, Mat. zametki, 83:1 (2008), 139–152 | DOI | MR | Zbl

[6] Yurko V. A., Recovering Sturm–Liouville operators on trees from spectra, Schriftenreiche des Fachbereichs Mathematik, SM-DU-684, Universitaet Duisburg-Essen, Duisburg, 2009, 8 pp.

[7] Yurko V. A., “Inverse problems for Sturm–Liouville operators on graphs with a cycle”, Operators and Matrices, 2:4 (2008), 543–553 | DOI | MR | Zbl

[8] Yurko V. A., “Ob obratnoi spektralnoi zadache dlya differentsialnykh operatorov na grafe-ezhe”, Dokl. AN, 425:4 (2009), 466–470 | MR | Zbl

[9] Yurko V. A., Spectral analysis for Sturm-Liouville operators on a graph with a rooted cycle, Schriftenreiche des Fachbereichs Mathematik. SM-DU-686, Universitaet Duisburg-Essen, Duisburg, 2009, 10 pp.

[10] Stankevich I. V., “Ob odnoi obratnoi zadache spektralnogo analiza dlya uravneniya Khilla”, Dokl. AN SSSR, 192:1 (1970), 34–37

[11] Marchenko V. A., Ostrovskii I. V., “Kharakteristika spektra operatora Khilla”, Mat. sb., 97:4 (1975), 540–606 | MR | Zbl