About asymptotics of Chebyshev polynomials orthogonal on an uniform net
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 2, pp. 44-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article asymptotic properties of the Chebyshev polynomials $T_n(x,N)$ ($0\le n\le N-1$) orthogonal on an uniform net $\Omega_N=\{0,1,\dots,N-1\}$ with the constant weight $\mu(x)=\frac2N$ (discrete analog of the Legendre polynomials) by $n=O(N^{\frac12})$, $N\to\infty$ were researched. The asymptotic formula that is relating polynomials $T_n(x,N)$ with Legendre polynomials $Pn(t)$ for $x=\frac N2(1+t)-\frac12$ was determined. The uniform estimation of remainder term of the formula relative to $t\in[-1,1]$, that in turn allows to prove unimprovable estimation of Chebyshev polynomials $T_n(x,N)$, was obtained.
@article{ISU_2009_9_2_a7,
     author = {E. Sh. Sultanov},
     title = {About asymptotics of {Chebyshev} polynomials orthogonal on an uniform net},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {44--49},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a7/}
}
TY  - JOUR
AU  - E. Sh. Sultanov
TI  - About asymptotics of Chebyshev polynomials orthogonal on an uniform net
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2009
SP  - 44
EP  - 49
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a7/
LA  - ru
ID  - ISU_2009_9_2_a7
ER  - 
%0 Journal Article
%A E. Sh. Sultanov
%T About asymptotics of Chebyshev polynomials orthogonal on an uniform net
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2009
%P 44-49
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a7/
%G ru
%F ISU_2009_9_2_a7
E. Sh. Sultanov. About asymptotics of Chebyshev polynomials orthogonal on an uniform net. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 2, pp. 44-49. http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a7/

[1] Chebyshev P. L., “Ob interpolirovanii velichin ravnootstoyaschikh (1875)”, Poln. sobr. soch., v. 3, Izd-vo AN SSSR, M., 1948, 66–87

[2] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[3] Sharapudinov I. I., Mnogochleny, ortogonalnye na setkakh. Teoriya i prilozheniya, Izd-vo Dag. gos. ped. un-ta, Makhachkala, 1997

[4] Sharapudinov I. I., “Asimptoticheskie svoistva ortogonalnykh mnogochlenov Khana diskretnoi peremennoi”, Mat. sb., 180:9 (1989), 1259–1277 | MR | Zbl

[5] Sharapudinov I. I., Nekotorye voprosy teorii ortogonalnykh sistem, Doktorskaya dissertatsiya, MI im. V. A. Steklova AN, M., 1991

[6] Sharapudinov I. I., “Ob asimptotike mnogochlenov Chebysheva, ortogonalnykh na konechnoi sisteme tochek”, Vestn. Mosk. un-ta. Ser. 1, 1992, no. 1, 29–35 | MR

[7] Daugavet I. K., Rafalson S. Z., “Nekotorye neravenstva tipa Markova–Nikolskogo dlya algebraicheskikh mnogochlenov”, Vestn. Leningr. un-ta, 19:4 (1972), 18–24 | MR