Nonseparable wavelets of Meyer type in besov and Lizorkin–Triebel spaces
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 2, pp. 12-18
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that Fourier transforms of nonseparable wavelets of Meyer type can be used as decomposition of unity in definition of Besov and Lizorkin–Triebel spaces. The result is the first step in the proof of unconditional basisness of above mentioned wavelets in scales under consideration.
@article{ISU_2009_9_2_a2,
author = {S. A. Garkovskaya},
title = {Nonseparable wavelets of {Meyer} type in besov and {Lizorkin{\textendash}Triebel} spaces},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {12--18},
year = {2009},
volume = {9},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a2/}
}
TY - JOUR AU - S. A. Garkovskaya TI - Nonseparable wavelets of Meyer type in besov and Lizorkin–Triebel spaces JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2009 SP - 12 EP - 18 VL - 9 IS - 2 UR - http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a2/ LA - ru ID - ISU_2009_9_2_a2 ER -
S. A. Garkovskaya. Nonseparable wavelets of Meyer type in besov and Lizorkin–Triebel spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 2, pp. 12-18. http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a2/
[1] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Teoriya vspleskov, Fizmatlit, M., 2005, 616 pp. | MR
[2] Bownik M., Speegle D., “Meyer Type Wavelet Bases in $\mathbb R^2$”, J. of Approx. Theory, 116 (2002), 49–75 | DOI | MR | Zbl
[3] Lindemann M., Approximation Properties of Non-Separable Wavelet Bases with Isotropic Scaling Matrices and their Relations to Besov Spaces, University Bremen, Bremen, 2005, 126 pp. | Zbl
[4] Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986, 448 pp. | MR | Zbl