Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2009_9_2_a2, author = {S. A. Garkovskaya}, title = {Nonseparable wavelets of {Meyer} type in besov and {Lizorkin--Triebel} spaces}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {12--18}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a2/} }
TY - JOUR AU - S. A. Garkovskaya TI - Nonseparable wavelets of Meyer type in besov and Lizorkin--Triebel spaces JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2009 SP - 12 EP - 18 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a2/ LA - ru ID - ISU_2009_9_2_a2 ER -
%0 Journal Article %A S. A. Garkovskaya %T Nonseparable wavelets of Meyer type in besov and Lizorkin--Triebel spaces %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2009 %P 12-18 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a2/ %G ru %F ISU_2009_9_2_a2
S. A. Garkovskaya. Nonseparable wavelets of Meyer type in besov and Lizorkin--Triebel spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 2, pp. 12-18. http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a2/
[1] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Teoriya vspleskov, Fizmatlit, M., 2005, 616 pp. | MR
[2] Bownik M., Speegle D., “Meyer Type Wavelet Bases in $\mathbb R^2$”, J. of Approx. Theory, 116 (2002), 49–75 | DOI | MR | Zbl
[3] Lindemann M., Approximation Properties of Non-Separable Wavelet Bases with Isotropic Scaling Matrices and their Relations to Besov Spaces, University Bremen, Bremen, 2005, 126 pp. | Zbl
[4] Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986, 448 pp. | MR | Zbl