Mathematical modeling of longitudinal blau of the system of homogeneous rods about rigid barrir at increase long solids
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 2, pp. 66-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical modeling of longitudinal elastic central blow of non-homogeneous rod system about a rigid barrier is carried out, at not-holding connections. Mathematical modeling is carried out by the exact analytical decision of the wave differential equation by method of Dalamber with the setting of necessary initial and boundary conditions. The rod system consists of a step non-homogeneous rod and a homogeneous rod of constant cross section. Connections with a rigid barrier and between rods are not-holding. Homogeneous sites of rod system have various length and the area of cross section.
@article{ISU_2009_9_2_a10,
     author = {A. A. Bityurin and V. K. Manzhosov},
     title = {Mathematical modeling of longitudinal blau of the system of homogeneous rods about rigid barrir at increase long solids},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {66--73},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a10/}
}
TY  - JOUR
AU  - A. A. Bityurin
AU  - V. K. Manzhosov
TI  - Mathematical modeling of longitudinal blau of the system of homogeneous rods about rigid barrir at increase long solids
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2009
SP  - 66
EP  - 73
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a10/
LA  - ru
ID  - ISU_2009_9_2_a10
ER  - 
%0 Journal Article
%A A. A. Bityurin
%A V. K. Manzhosov
%T Mathematical modeling of longitudinal blau of the system of homogeneous rods about rigid barrir at increase long solids
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2009
%P 66-73
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a10/
%G ru
%F ISU_2009_9_2_a10
A. A. Bityurin; V. K. Manzhosov. Mathematical modeling of longitudinal blau of the system of homogeneous rods about rigid barrir at increase long solids. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 2, pp. 66-73. http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a10/

[1] Alimov O. D., Manzhosov V. K., Eremyants V. E., Udar. Rasprostranenie voln deformatsii v udarnykh sistemakh, Nauka, M., 1985, 354 pp.

[2] Biderman V. L., Teoriya mekhanicheskikh kolebanii, Vyssh. shk., M., 1972, 416 pp. | Zbl

[3] Bityurin A. A., Manzhosov V. K., “Vozniknovenie nenagruzhennogo sostoyaniya v odnorodnom sterzhne pri soudarenii sterzhnevoi sistemy s zhestkoi pregradoi”, Izv. vuzov. Mashinostroenie, 2006, no. 11, 27–32

[4] Bityurin A. A., Manzhosov V. K., “Izmenenie deformatsii na uchastkakh sterzhnevoi sistemy posle povtornogo udara v kontaktnom sechenii”, Vestn. UlGTU, 2007, no. 3, 23–28

[5] Bityurin A. A., Manzhosov V. K., “Volnovye protsessy pri prodolnom udare sterzhnya o stupenchatyi sterzhen, soprikasayuschiisya s zhestkoi pregradoi”, PMM, 73:2 (2009), 226–235 | Zbl

[6] Manzhosov V. K., Modeli prodolnogo udara, Izd-vo UlGTU, Ulyanovsk, 2006, 159 pp.