Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2009_9_2_a0, author = {Zh. I. Bakhtina}, title = {On {Stilties} differential on time scales}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {3--5}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a0/} }
Zh. I. Bakhtina. On Stilties differential on time scales. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 2, pp. 3-5. http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a0/
[1] Pokornyi Yu. V., Zvereva M. B., Shabrov S. A., “Ostsillyatsionnaya teoriya Shturma–Liuvillya dlya impulsnykh zadach”, Uspekhi mat. nauk, 63:1(379) (2008), 111–154 | DOI | MR | Zbl
[2] Bodin S., Bokhner M., Lutts D., “Asimptoticheskoe povedenie reshenii dinamicheskikh uravnenii”, Sovr. mat. Fundamentalnye napravleniya, 1, 2003, 30–39 | MR | Zbl
[3] Saker S. H., “Oscillation of Second-Order Forced Nonlinear Dynamic Equations on Time Scales”, Electronic J. of Qualitative Theory of Differential Equations, 23 (2005), 1–17 | MR
[4] Hilger S., “Analysis on measure chains – a unified approach to continuous and discrete calculus”, Results Math., 18 (1990), 18–56 | DOI | MR | Zbl
[5] Bohner M., Peterson A., Dynamic Equations on Time Scales: an Introduction with Applications, Birkhäuser Boston Inc., Boston, 2001, 358 pp. | MR | Zbl
[6] Dosly O., Hilger S., “A necessary and sufficient condition for oscillation of the Sturm Liouville dynamic equation on time scales”, J. Comp. Appl. Math., 141 (2002), 147–158 | DOI | MR | Zbl
[7] Erbe L., Peterson A., “Riccati equations on a measure chain”, Dynamic systems and applications 3 (Atlanta, GA, 1999), Dynamic, Atlanta, GA, 2001, 193–199 | MR | Zbl