On Stilties differential on time scales
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 2, pp. 3-5.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we apply the method of Stilties differentials offered by U. V. Pokornyi to the theory of Dynamic Equations on Time Scales. It's possibly to put this theory on serious mathematical basis.
@article{ISU_2009_9_2_a0,
     author = {Zh. I. Bakhtina},
     title = {On {Stilties} differential on time scales},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {3--5},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a0/}
}
TY  - JOUR
AU  - Zh. I. Bakhtina
TI  - On Stilties differential on time scales
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2009
SP  - 3
EP  - 5
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a0/
LA  - ru
ID  - ISU_2009_9_2_a0
ER  - 
%0 Journal Article
%A Zh. I. Bakhtina
%T On Stilties differential on time scales
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2009
%P 3-5
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a0/
%G ru
%F ISU_2009_9_2_a0
Zh. I. Bakhtina. On Stilties differential on time scales. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 2, pp. 3-5. http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a0/

[1] Pokornyi Yu. V., Zvereva M. B., Shabrov S. A., “Ostsillyatsionnaya teoriya Shturma–Liuvillya dlya impulsnykh zadach”, Uspekhi mat. nauk, 63:1(379) (2008), 111–154 | DOI | MR | Zbl

[2] Bodin S., Bokhner M., Lutts D., “Asimptoticheskoe povedenie reshenii dinamicheskikh uravnenii”, Sovr. mat. Fundamentalnye napravleniya, 1, 2003, 30–39 | MR | Zbl

[3] Saker S. H., “Oscillation of Second-Order Forced Nonlinear Dynamic Equations on Time Scales”, Electronic J. of Qualitative Theory of Differential Equations, 23 (2005), 1–17 | MR

[4] Hilger S., “Analysis on measure chains – a unified approach to continuous and discrete calculus”, Results Math., 18 (1990), 18–56 | DOI | MR | Zbl

[5] Bohner M., Peterson A., Dynamic Equations on Time Scales: an Introduction with Applications, Birkhäuser Boston Inc., Boston, 2001, 358 pp. | MR | Zbl

[6] Dosly O., Hilger S., “A necessary and sufficient condition for oscillation of the Sturm Liouville dynamic equation on time scales”, J. Comp. Appl. Math., 141 (2002), 147–158 | DOI | MR | Zbl

[7] Erbe L., Peterson A., “Riccati equations on a measure chain”, Dynamic systems and applications 3 (Atlanta, GA, 1999), Dynamic, Atlanta, GA, 2001, 193–199 | MR | Zbl