Same properties $r$-fold integration series on Fourier--Haar system
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 1, pp. 68-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

Approximation properties of series obtained by $r$-fold integration of Fourier–Haar series are research. It is shown that $r$-fold integrated Fourier–Haar series can be useful in the task of simultaneous approximation of differentiable function and its derivatives.
@article{ISU_2009_9_1_a8,
     author = {I. I. Sharapudinov and G. N. Muratova},
     title = {Same properties $r$-fold integration series on {Fourier--Haar} system},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {68--76},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a8/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
AU  - G. N. Muratova
TI  - Same properties $r$-fold integration series on Fourier--Haar system
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2009
SP  - 68
EP  - 76
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a8/
LA  - ru
ID  - ISU_2009_9_1_a8
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%A G. N. Muratova
%T Same properties $r$-fold integration series on Fourier--Haar system
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2009
%P 68-76
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a8/
%G ru
%F ISU_2009_9_1_a8
I. I. Sharapudinov; G. N. Muratova. Same properties $r$-fold integration series on Fourier--Haar system. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 1, pp. 68-76. http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a8/

[1] Sharapudinov I. I., “Smeshannye ryady po nekotorym ortogonalnym sistemam i ikh prilozheniya”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tez. dokl. 12-i Sarat. zimnei shkoly, Izd-vo GosUNTs “Kolledzh”, Saratov, 2004, 205–206

[2] Sharapudinov I. I., “Priblizhenie funktsii s peremennoi gladkostyu summami Fure–Lezhandra”, Mat. sb., 191:5 (2000), 143–160 | DOI | MR | Zbl

[3] Sharapudinov I. I., “Smeshannye ryady po ultrasfericheskim polinomam i ikh approksimativnye svoistva”, Mat. sb., 194:3 (2003), 115–148 | DOI | MR | Zbl

[4] Sharapudinov I. I., “Approksimativnye svoistva operatorov $\mathscr Y_{n+2r}(f)$ i ikh diskretnykh analogov”, Mat. zametki, 72:5 (2002), 765–795 | DOI | MR | Zbl

[5] Kashin S. B., Saakyan A. A., Ortogonalnye ryady, AFTs, M., 1999 | Zbl