Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2009_9_1_a7, author = {P. L. Shabalin}, title = {Certain case of the {Riemann--Hilbert} boundary value problem with peculiarities of coefficients}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {58--67}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a7/} }
TY - JOUR AU - P. L. Shabalin TI - Certain case of the Riemann--Hilbert boundary value problem with peculiarities of coefficients JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2009 SP - 58 EP - 67 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a7/ LA - ru ID - ISU_2009_9_1_a7 ER -
%0 Journal Article %A P. L. Shabalin %T Certain case of the Riemann--Hilbert boundary value problem with peculiarities of coefficients %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2009 %P 58-67 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a7/ %G ru %F ISU_2009_9_1_a7
P. L. Shabalin. Certain case of the Riemann--Hilbert boundary value problem with peculiarities of coefficients. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 1, pp. 58-67. http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a7/
[1] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR
[2] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968, 511 pp. | MR
[3] Chibrikova L. I., Salekhov L. G., “K resheniyu kraevoi zadachi Gilberta”, Trudy seminara po kraevym zadacham, 8, Izd-vo Kazan. un-ta, Kazan, 1971, 155–175
[4] Salimov R. B., Seleznev V. V., “K resheniyu kraevoi zadachi Gilberta s razryvnymi koeffitsientami”, Trudy seminara po kraevym zadacham, 16, Izd-vo Kazan. un-ta, Kazan, 1979, 149–162 | MR
[5] Salimov R. B., Shabalin P. L., Kraevaya zadacha Gilberta teorii analiticheskikh funktsii i ee prilozheniya, Izd-vo Kazan. mat. ob-va, Kazan, 2005, 298 pp.
[6] Salimov R. B., Shabalin P. L., “Zadacha Gilberta. Sluchai beskonechnogo mnozhestva tochek razryva koeffitsientov”, Sib. mat. zhurn., 49:4 (2008), 898–915 | MR | Zbl
[7] Zhuravleva M. I., “Odnorodnaya kraevaya zadacha Rimana s beskonechnym indeksom so schetnym mnozhestvom razryvov ee koeffitsienta”, Trudy Tbilisskogo mat. in-ta AN Gr. SSR, 43, 1973, 53–71 | Zbl
[8] Zhuravleva M. I., “Neodnorodnaya kraevaya zadacha s beskonechnym indeksom i so schetnym mnozhestvom nulei i polyusov koeffitsientov”, DAN SSSR, 214:4 (1974), 755–757 | Zbl
[9] Markushevich A. I., Teoriya analiticheskikh funktsii, V 2-kh t., v. 2, Nauka, M., 1968, 624 pp. | Zbl
[10] Krikunov Yu. M., “Differentsirovanie osobykh integralov s yadrom Koshi i odno granichnoe svoistvo golomorfnykh funktsii”, Kraevye zadachi teorii funktsii kompleksnogo peremennogo, Izd-vo Kazan. un-ta, Kazan, 1962, 17–24 | MR
[11] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984, 469 pp. | MR | Zbl