Certain case of the Riemann--Hilbert boundary value problem with peculiarities of coefficients
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 1, pp. 58-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Riemann–Hilbert boundary value problem for a case where the coefficients have countable set of discontinuity points of the first kind such that the series of jumps of argument of the coefficient function is divergent, but the index of the Hilbert problem is finite. We derive the formulae for general solution of the problem and investigate the picture of solvability.
@article{ISU_2009_9_1_a7,
     author = {P. L. Shabalin},
     title = {Certain case of the {Riemann--Hilbert} boundary value problem with peculiarities of coefficients},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {58--67},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a7/}
}
TY  - JOUR
AU  - P. L. Shabalin
TI  - Certain case of the Riemann--Hilbert boundary value problem with peculiarities of coefficients
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2009
SP  - 58
EP  - 67
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a7/
LA  - ru
ID  - ISU_2009_9_1_a7
ER  - 
%0 Journal Article
%A P. L. Shabalin
%T Certain case of the Riemann--Hilbert boundary value problem with peculiarities of coefficients
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2009
%P 58-67
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a7/
%G ru
%F ISU_2009_9_1_a7
P. L. Shabalin. Certain case of the Riemann--Hilbert boundary value problem with peculiarities of coefficients. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 1, pp. 58-67. http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a7/

[1] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR

[2] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968, 511 pp. | MR

[3] Chibrikova L. I., Salekhov L. G., “K resheniyu kraevoi zadachi Gilberta”, Trudy seminara po kraevym zadacham, 8, Izd-vo Kazan. un-ta, Kazan, 1971, 155–175

[4] Salimov R. B., Seleznev V. V., “K resheniyu kraevoi zadachi Gilberta s razryvnymi koeffitsientami”, Trudy seminara po kraevym zadacham, 16, Izd-vo Kazan. un-ta, Kazan, 1979, 149–162 | MR

[5] Salimov R. B., Shabalin P. L., Kraevaya zadacha Gilberta teorii analiticheskikh funktsii i ee prilozheniya, Izd-vo Kazan. mat. ob-va, Kazan, 2005, 298 pp.

[6] Salimov R. B., Shabalin P. L., “Zadacha Gilberta. Sluchai beskonechnogo mnozhestva tochek razryva koeffitsientov”, Sib. mat. zhurn., 49:4 (2008), 898–915 | MR | Zbl

[7] Zhuravleva M. I., “Odnorodnaya kraevaya zadacha Rimana s beskonechnym indeksom so schetnym mnozhestvom razryvov ee koeffitsienta”, Trudy Tbilisskogo mat. in-ta AN Gr. SSR, 43, 1973, 53–71 | Zbl

[8] Zhuravleva M. I., “Neodnorodnaya kraevaya zadacha s beskonechnym indeksom i so schetnym mnozhestvom nulei i polyusov koeffitsientov”, DAN SSSR, 214:4 (1974), 755–757 | Zbl

[9] Markushevich A. I., Teoriya analiticheskikh funktsii, V 2-kh t., v. 2, Nauka, M., 1968, 624 pp. | Zbl

[10] Krikunov Yu. M., “Differentsirovanie osobykh integralov s yadrom Koshi i odno granichnoe svoistvo golomorfnykh funktsii”, Kraevye zadachi teorii funktsii kompleksnogo peremennogo, Izd-vo Kazan. un-ta, Kazan, 1962, 17–24 | MR

[11] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984, 469 pp. | MR | Zbl