Projection description of bessel sequences
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 1, pp. 44-51

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Bessel sequences in Banach space with respect to modeling sequences space. The generalized analogues of theorems of Bari, Schur, Novikov and Czaja are established.
@article{ISU_2009_9_1_a5,
     author = {P. A. Terekhin},
     title = {Projection description of bessel sequences},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {44--51},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a5/}
}
TY  - JOUR
AU  - P. A. Terekhin
TI  - Projection description of bessel sequences
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2009
SP  - 44
EP  - 51
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a5/
LA  - ru
ID  - ISU_2009_9_1_a5
ER  - 
%0 Journal Article
%A P. A. Terekhin
%T Projection description of bessel sequences
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2009
%P 44-51
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a5/
%G ru
%F ISU_2009_9_1_a5
P. A. Terekhin. Projection description of bessel sequences. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 1, pp. 44-51. http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a5/