On properties of the eigenfunctions of a~quadratic pencil of the second order differential operators
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 1, pp. 31-44

Voir la notice de l'article provenant de la source Math-Net.Ru

The degenerated second order ordinary differential quadratic pencil with constant coefficients is considered. The case is studied, when the roots of characteristic equation lie on a straight line coming through the origin and on the both side of the origin. Properties of the system of its eigenfunctions in the spaces $L_2[0,\sigma]$, $\sigma>0$ is investigated. Criteria of one-fold completeness and minimality of this systemare proved and sufficient conditions of one-fold completeness and minimality are found.
@article{ISU_2009_9_1_a4,
     author = {V. S. Rykhlov},
     title = {On properties of the eigenfunctions of a~quadratic pencil of the second order differential operators},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {31--44},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a4/}
}
TY  - JOUR
AU  - V. S. Rykhlov
TI  - On properties of the eigenfunctions of a~quadratic pencil of the second order differential operators
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2009
SP  - 31
EP  - 44
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a4/
LA  - ru
ID  - ISU_2009_9_1_a4
ER  - 
%0 Journal Article
%A V. S. Rykhlov
%T On properties of the eigenfunctions of a~quadratic pencil of the second order differential operators
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2009
%P 31-44
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a4/
%G ru
%F ISU_2009_9_1_a4
V. S. Rykhlov. On properties of the eigenfunctions of a~quadratic pencil of the second order differential operators. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 1, pp. 31-44. http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a4/