On the non-classic models of beams, plates and shells
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 3, pp. 72-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the problems of statics, of free vibrations, and of buckling of beams, plates and shells the Timoshenko–Reissner's model with shear is compared with the classic Kirchhoff–Love model and with the 3D theory of elasticity. By using some test examples the formal asymptotic character of 1D and 2D models is established and their field of application is found. The asymptotic expansions based on the small shell or plate thickness compared with the length of wave are used. The special attention is paid to the buckling or vibration modes localized near the free surface.
@article{ISU_2008_8_3_a9,
     author = {P. E. Tovstik},
     title = {On the non-classic models of beams, plates and shells},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {72--85},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2008_8_3_a9/}
}
TY  - JOUR
AU  - P. E. Tovstik
TI  - On the non-classic models of beams, plates and shells
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2008
SP  - 72
EP  - 85
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2008_8_3_a9/
LA  - ru
ID  - ISU_2008_8_3_a9
ER  - 
%0 Journal Article
%A P. E. Tovstik
%T On the non-classic models of beams, plates and shells
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2008
%P 72-85
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2008_8_3_a9/
%G ru
%F ISU_2008_8_3_a9
P. E. Tovstik. On the non-classic models of beams, plates and shells. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 3, pp. 72-85. http://geodesic.mathdoc.fr/item/ISU_2008_8_3_a9/

[1] Donnell L. G., Balki, plastiny i obolochki, Nauka, M., 1982, 568 pp.

[2] Goldenveizer A. L., Teoriya uprugikh tonkikh obolochek, Nauka, M., 1976, 512 pp. | MR

[3] Agalovyan L. A., Asimptoticheskaya teoriya anizotropnykh plastin i obolochek, Nauka, M., 1997, 414 pp.

[4] Nazarov S. A., Asimptoticheskii analiz tonkikh plastin i sterzhnei, Nauchnaya kniga, Novosibirsk, 2002, 408 pp. | Zbl

[5] Tovstik P. E., “Ob asimptoticheskom kharaktere priblizhennykh modelei balok, plastin i obolochek”, Vestn. S.-Peterb. un-ta. Ser. 1, 2007, no. 3, 49–54 | Zbl

[6] Birger I. A., Panovko Ya. G., Prochnost. Ustoichivost. Kolebaniya: V 3-kh t., v. 3, ed. Ya. G. Panovko, Mashinostroenie, M., 1968, 568 pp.

[7] Tovstik P. E., Tovstik T. P., “On the 2D models of plates and shells including the shear”, ZAMM, 87:2 (2007), 160–171 | DOI | MR | Zbl

[8] Grigolyuk E. I., Kayuanov V. V., Ustoichivost obolochek, Nauka, M., 1978, 360 pp. | MR

[9] Tovstik P. E., Ustoichivost tonkikh obolochek, Nauka, M., 1995, 320 pp. | MR | Zbl

[10] Morozov N. F., Semenov B. N., Tovstik P. E., “Kontinualnye i diskretnye modeli v zadache ustoichivosti trekhsloinoi nanoplastiny”, Teor. i prikl. mekhanika, 19, Minsk, 2005, 37–41

[11] Rodionova V. A., Titaev B. F., Chernykh K. F., Prikladnaya teoriya anizotropnykh plastin i obolochek, Izd-vo S.-Peterb. un-ta, SPb., 1996, 280 pp.

[12] Lyav A., Matematicheskaya teoriya uprugosti, ONTI, M., L., 1935, 674 pp.

[13] Syarle F., Matematicheskaya teoriya uprugosti, Mir, M., 1992, 472 pp.

[14] Ishlinskii A. Yu., “Ob odnom predelnom perekhode v teorii ustoichivosti uprugikh pryamougolnykh plastin”, Dokl. AN SSSR, 95:3 (1954), 477–479

[15] Banichuk N. V., Ishlinskii A. Yu., “O nekotorykh osobennostyakh zadach ustoichivosti i kolebanii pryamougolnykh plastin”, PMM, 59:4 (1995), 620–625 | MR | Zbl

[16] Kilchevskii N. A., Nikulinskaya S. V., “Ob osesimmetrichnoi potere ustoichivosti krugovoi tsilindricheskoi obolochki”, Prikl. mekh., 1:11 (1965), 1–6

[17] Ershova Z. G., “Ustoichivost tsilindricheskoi paneli so slabo zakreplennymi pryamolineinymi krayami”, Vestn. S.-Peterb. un-ta. Ser. 1, 1993, no. 3, 93–97

[18] Morozov N. F., Paukshto M. V., Tovstik P. E., “Ustoichivost poverkhnostnogo sloya pri termonagruzhenii”, MTT, 1998, no. 1, 130–139

[19] Ilgamov M. A., Ivanov V. A., Gulin B. V., Prochnost, ustoichivost i dinamika obolochek s uprugim zapolnitelem, Nauka, M., 1978, 332 pp.

[20] Tovstik P. E., “Reaktsiya predvaritelno napryazhennogo ortotropnogo osnovaniya”, Vestn. S.-Peterb. un-ta. Ser. 1, 2006, no. 4, 388

[21] Tovstik P. E., “Lokalnaya ustoichivost plastin i pologikh obolochek na uprugom osnovanii”, Izv. RAN. MTT, 2005, no. 1, 147–160

[22] Rabotnov Yu. N., “Lokalnaya ustoichivost obolochek”, Dokl. AN SSSR, 52:2 (1946), 111–112 | MR

[23] Shirshov V. P., “Lokalnaya ustoichivost obolochek”, Tr. 2 Vsesoyuzn. konf. po teorii obolochek i plastin, Kiev, 1962, 314–317

[24] Bolotin V. V., “Kraevoi effekt pri kolebaniyakh uprugikh obolochek”, PMM, 24:5 (1960) | MR