Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2008_8_3_a9, author = {P. E. Tovstik}, title = {On the non-classic models of beams, plates and shells}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {72--85}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2008_8_3_a9/} }
TY - JOUR AU - P. E. Tovstik TI - On the non-classic models of beams, plates and shells JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2008 SP - 72 EP - 85 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2008_8_3_a9/ LA - ru ID - ISU_2008_8_3_a9 ER -
P. E. Tovstik. On the non-classic models of beams, plates and shells. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 3, pp. 72-85. http://geodesic.mathdoc.fr/item/ISU_2008_8_3_a9/
[1] Donnell L. G., Balki, plastiny i obolochki, Nauka, M., 1982, 568 pp.
[2] Goldenveizer A. L., Teoriya uprugikh tonkikh obolochek, Nauka, M., 1976, 512 pp. | MR
[3] Agalovyan L. A., Asimptoticheskaya teoriya anizotropnykh plastin i obolochek, Nauka, M., 1997, 414 pp.
[4] Nazarov S. A., Asimptoticheskii analiz tonkikh plastin i sterzhnei, Nauchnaya kniga, Novosibirsk, 2002, 408 pp. | Zbl
[5] Tovstik P. E., “Ob asimptoticheskom kharaktere priblizhennykh modelei balok, plastin i obolochek”, Vestn. S.-Peterb. un-ta. Ser. 1, 2007, no. 3, 49–54 | Zbl
[6] Birger I. A., Panovko Ya. G., Prochnost. Ustoichivost. Kolebaniya: V 3-kh t., v. 3, ed. Ya. G. Panovko, Mashinostroenie, M., 1968, 568 pp.
[7] Tovstik P. E., Tovstik T. P., “On the 2D models of plates and shells including the shear”, ZAMM, 87:2 (2007), 160–171 | DOI | MR | Zbl
[8] Grigolyuk E. I., Kayuanov V. V., Ustoichivost obolochek, Nauka, M., 1978, 360 pp. | MR
[9] Tovstik P. E., Ustoichivost tonkikh obolochek, Nauka, M., 1995, 320 pp. | MR | Zbl
[10] Morozov N. F., Semenov B. N., Tovstik P. E., “Kontinualnye i diskretnye modeli v zadache ustoichivosti trekhsloinoi nanoplastiny”, Teor. i prikl. mekhanika, 19, Minsk, 2005, 37–41
[11] Rodionova V. A., Titaev B. F., Chernykh K. F., Prikladnaya teoriya anizotropnykh plastin i obolochek, Izd-vo S.-Peterb. un-ta, SPb., 1996, 280 pp.
[12] Lyav A., Matematicheskaya teoriya uprugosti, ONTI, M., L., 1935, 674 pp.
[13] Syarle F., Matematicheskaya teoriya uprugosti, Mir, M., 1992, 472 pp.
[14] Ishlinskii A. Yu., “Ob odnom predelnom perekhode v teorii ustoichivosti uprugikh pryamougolnykh plastin”, Dokl. AN SSSR, 95:3 (1954), 477–479
[15] Banichuk N. V., Ishlinskii A. Yu., “O nekotorykh osobennostyakh zadach ustoichivosti i kolebanii pryamougolnykh plastin”, PMM, 59:4 (1995), 620–625 | MR | Zbl
[16] Kilchevskii N. A., Nikulinskaya S. V., “Ob osesimmetrichnoi potere ustoichivosti krugovoi tsilindricheskoi obolochki”, Prikl. mekh., 1:11 (1965), 1–6
[17] Ershova Z. G., “Ustoichivost tsilindricheskoi paneli so slabo zakreplennymi pryamolineinymi krayami”, Vestn. S.-Peterb. un-ta. Ser. 1, 1993, no. 3, 93–97
[18] Morozov N. F., Paukshto M. V., Tovstik P. E., “Ustoichivost poverkhnostnogo sloya pri termonagruzhenii”, MTT, 1998, no. 1, 130–139
[19] Ilgamov M. A., Ivanov V. A., Gulin B. V., Prochnost, ustoichivost i dinamika obolochek s uprugim zapolnitelem, Nauka, M., 1978, 332 pp.
[20] Tovstik P. E., “Reaktsiya predvaritelno napryazhennogo ortotropnogo osnovaniya”, Vestn. S.-Peterb. un-ta. Ser. 1, 2006, no. 4, 388
[21] Tovstik P. E., “Lokalnaya ustoichivost plastin i pologikh obolochek na uprugom osnovanii”, Izv. RAN. MTT, 2005, no. 1, 147–160
[22] Rabotnov Yu. N., “Lokalnaya ustoichivost obolochek”, Dokl. AN SSSR, 52:2 (1946), 111–112 | MR
[23] Shirshov V. P., “Lokalnaya ustoichivost obolochek”, Tr. 2 Vsesoyuzn. konf. po teorii obolochek i plastin, Kiev, 1962, 314–317
[24] Bolotin V. V., “Kraevoi effekt pri kolebaniyakh uprugikh obolochek”, PMM, 24:5 (1960) | MR