Approximative properties of mixed series by Lagerre's polynomials onclasses of smooth functions
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 2, pp. 3-11

Voir la notice de l'article provenant de la source Math-Net.Ru

Approximative properties of mixed series by Lagerre's polynomials on classes of smooth functions that given on axle $[0,\infty)$ are viewed. Inequality that corresponds to Lebesgue inequality for trigonometric Fourier sumswas found for evaluation of deflection of smooth function from it's partial sums of mixed series by Lagerre's polynomials. Evaluations for corresponding Lebesgue function of partial sums of mixed series by Lagerre's polynomials were found.
@article{ISU_2008_8_2_a0,
     author = {S. Ya. Pirmetova},
     title = {Approximative properties of mixed series by {Lagerre's} polynomials onclasses of smooth functions},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2008_8_2_a0/}
}
TY  - JOUR
AU  - S. Ya. Pirmetova
TI  - Approximative properties of mixed series by Lagerre's polynomials onclasses of smooth functions
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2008
SP  - 3
EP  - 11
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2008_8_2_a0/
LA  - ru
ID  - ISU_2008_8_2_a0
ER  - 
%0 Journal Article
%A S. Ya. Pirmetova
%T Approximative properties of mixed series by Lagerre's polynomials onclasses of smooth functions
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2008
%P 3-11
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2008_8_2_a0/
%G ru
%F ISU_2008_8_2_a0
S. Ya. Pirmetova. Approximative properties of mixed series by Lagerre's polynomials onclasses of smooth functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 2, pp. 3-11. http://geodesic.mathdoc.fr/item/ISU_2008_8_2_a0/