Investigation of the isotropic plates bending lying on the complex two-parameter elastic foundation by boundary element method
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 1, pp. 36-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is dedicated to the investigation of the linear deformation problem of plates based on application of the fundamental decision of task of the isotropic plate bending lying on the complex two-parameter elastic foundation by an indirect method of boundary elements. In the issue of resolving system analysis was indicated that the task of isotropic plate bending lying on the simple elastic foundation is a special case of the task declared in the title of the article.
@article{ISU_2008_8_1_a6,
     author = {P. G. Velikanov},
     title = {Investigation of the isotropic plates bending lying on the complex two-parameter elastic foundation by boundary element method},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {36--42},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a6/}
}
TY  - JOUR
AU  - P. G. Velikanov
TI  - Investigation of the isotropic plates bending lying on the complex two-parameter elastic foundation by boundary element method
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2008
SP  - 36
EP  - 42
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a6/
LA  - ru
ID  - ISU_2008_8_1_a6
ER  - 
%0 Journal Article
%A P. G. Velikanov
%T Investigation of the isotropic plates bending lying on the complex two-parameter elastic foundation by boundary element method
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2008
%P 36-42
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a6/
%G ru
%F ISU_2008_8_1_a6
P. G. Velikanov. Investigation of the isotropic plates bending lying on the complex two-parameter elastic foundation by boundary element method. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 1, pp. 36-42. http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a6/

[1] Artyukhin Yu. P., Gribov A. P., Reshenie zadach nelineinogo deformirovaniya plastin i pologikh obolochek metodom granichnykh elementov, Fen, Kazan, 2002, 199 pp. | MR | Zbl

[2] Vlasov V. Z., Leontev N. N., Balki, plity i obolochki na uprugom osnovanii, Fizmatgiz, M., 1960, 340 pp.

[3] Shevchenko V. P., Integralnye preobrazovaniya v teorii plastin i obolochek: Ucheb. posobie, Izd-vo Donetsk. un-ta, Donetsk, 1977, 115 pp.

[4] Korenev B. G., Nekotorye zadachi teorii uprugosti i teploprovodnosti, reshaemye v besselevykh funktsiyakh, Fizmatgiz, M., 1960, 458 pp. | MR

[5] Konchkovskii Z., Plity. Staticheskie raschety, ed. A. I. Tseitlin, Stroiizdat, M., 1984, 480 pp., Per. s pol. M. V. Predtechenskogo

[6] Panich O. I., “O potentsialakh poligarmonicheskogo uravneniya chetvertogo poryadka”, Mat. sbornik. Odessa, 50:3 (1960), 335–354

[7] Timoshenko S. P., Voinovskii-Kriger S., Plastinki i obolochki, Nauka, M., 1966, 636 pp.