About approximation multinominals, orthogonal on any grids
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 1, pp. 25-31

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work are investigated approximation properties of multinominals $\hat p_n(x)$, orthogonal with weight $\Delta t_j$ on the any grids consisting of final number of points of a piece $[-1,1]$. Namely the approximation formula, in which is established at increase $n$ together with $N$, approximation behaviour of these multinominals close to approximation behaviour of multinominals Lasiandra.
@article{ISU_2008_8_1_a4,
     author = {A. A. Nurmagomedov},
     title = {About approximation multinominals, orthogonal on any grids},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {25--31},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a4/}
}
TY  - JOUR
AU  - A. A. Nurmagomedov
TI  - About approximation multinominals, orthogonal on any grids
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2008
SP  - 25
EP  - 31
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a4/
LA  - ru
ID  - ISU_2008_8_1_a4
ER  - 
%0 Journal Article
%A A. A. Nurmagomedov
%T About approximation multinominals, orthogonal on any grids
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2008
%P 25-31
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a4/
%G ru
%F ISU_2008_8_1_a4
A. A. Nurmagomedov. About approximation multinominals, orthogonal on any grids. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 1, pp. 25-31. http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a4/