About approximation multinominals, orthogonal on any grids
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 1, pp. 25-31
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work are investigated approximation properties of multinominals $\hat p_n(x)$, orthogonal with weight $\Delta t_j$ on the any grids consisting of final number of points of a piece $[-1,1]$. Namely the approximation formula, in which is established at increase $n$ together with $N$, approximation behaviour of these multinominals close to approximation behaviour of multinominals Lasiandra.
@article{ISU_2008_8_1_a4,
author = {A. A. Nurmagomedov},
title = {About approximation multinominals, orthogonal on any grids},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {25--31},
year = {2008},
volume = {8},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a4/}
}
A. A. Nurmagomedov. About approximation multinominals, orthogonal on any grids. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 1, pp. 25-31. http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a4/
[1] Daugavet I. K., Rafalson C. Z., “O nekotorykh neravenstvakh dlya algebraicheskikh mnogochlenov”, Vestnik Leningr. un-ta, 19 (1974), 18–24 | MR | Zbl
[2] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962
[3] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979, 244–271 pp. | MR | Zbl
[4] Konyagin C. V., “O neravenstve V. A. Markova dlya mnogochlenov v metrike $L$”, Trudy Mat. in-ta AN SSSR, 145, 1980, 117–125 | MR | Zbl
[5] Sharapudinov I. I., Smeshannye ryady po ortogonalnym polinomam, Izd-vo DNTs, Makhachkala, 2004, 35–36 pp.