On the solvability of the inverse Sturm–Liouville problem in the central symmetry case
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 1, pp. 21-24
Cet article a éte moissonné depuis la source Math-Net.Ru
Necessary and sufficient conditions are provided for the solvability of the inverse problem of recovering Sturm–Liouville operator from its spectrum in the central symmetry case.
@article{ISU_2008_8_1_a3,
author = {T. V. Mazur},
title = {On the solvability of the inverse {Sturm{\textendash}Liouville} problem in the central symmetry case},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {21--24},
year = {2008},
volume = {8},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a3/}
}
TY - JOUR AU - T. V. Mazur TI - On the solvability of the inverse Sturm–Liouville problem in the central symmetry case JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2008 SP - 21 EP - 24 VL - 8 IS - 1 UR - http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a3/ LA - ru ID - ISU_2008_8_1_a3 ER -
T. V. Mazur. On the solvability of the inverse Sturm–Liouville problem in the central symmetry case. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 1, pp. 21-24. http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a3/
[1] Yurko V. A., Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007 | Zbl
[2] Yurko V. A., Obratnye spektralnye zadachi i ikh prilozheniya, Izd-vo Sarat. ped. in-ta, Saratov, 2001
[3] Conway J. B., Functions of One Complex Variable, v. I, 2nd ed., Springer-Verlag, N.Y., 1995 | MR | Zbl
[4] Pöschel J., Trubowitz E., Inverse Spectral Theory, Academic Press, N.Y., 1987 | MR | Zbl