On the equiconvergence of expansions for the certain class of the functional-differential operators with involution on the graph
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 1, pp. 9-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equiconvergence of expansions in eigen- and adjoint functions and trigonometric Fourier series is established for a 1-st order functional-differential operator on the graph-cycle.
@article{ISU_2008_8_1_a1,
     author = {M. Sh. Burlutskaya and A. P. Khromov},
     title = {On the equiconvergence of expansions for the certain class of the functional-differential operators with involution on the graph},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {9--14},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a1/}
}
TY  - JOUR
AU  - M. Sh. Burlutskaya
AU  - A. P. Khromov
TI  - On the equiconvergence of expansions for the certain class of the functional-differential operators with involution on the graph
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2008
SP  - 9
EP  - 14
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a1/
LA  - ru
ID  - ISU_2008_8_1_a1
ER  - 
%0 Journal Article
%A M. Sh. Burlutskaya
%A A. P. Khromov
%T On the equiconvergence of expansions for the certain class of the functional-differential operators with involution on the graph
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2008
%P 9-14
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a1/
%G ru
%F ISU_2008_8_1_a1
M. Sh. Burlutskaya; A. P. Khromov. On the equiconvergence of expansions for the certain class of the functional-differential operators with involution on the graph. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 1, pp. 9-14. http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a1/

[1] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L. i dr., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004, 272 pp. | Zbl

[2] Andreev A. A., “Ob analogakh klassicheskikh kraevykh zadach dlya odnogo differentsialnogo uravneniya vtorogo poryadka s otklonyayuschimsya argumentom”, Differents. uravneniya, 40:5 (2004), 1126–1128 | Zbl

[3] Dankl Ch. G., “Differential-Difference Operators Associated to Reflection Groups”, Trans. Amer. Math. Soc., 311:1 (1989), 167–183 | DOI | MR

[4] Platonov S. S., “Razlozhenie po sobstvennym funktsiyam dlya nekotorykh funktsionalno-differentsialnykh operatorov”, Tr. Petrozavod. un-ta. Ser. Matem., 11, 2004, 15–35

[5] Khromov A. P., “Teoremy ravnoskhodimosti dlya integro-differentsialnykh i integralnykh operatorov”, Mat. sbornik, 114(156):3 (1981), 378–405 | MR | Zbl

[6] Kornev V. V., Khromov A. P., “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam integralnykh operatorov s yadrami, dopuskayuschimi razryvy proizvodnykh na diagonalyakh”, Mat. sbornik, 192:10 (2001), 33–50 | DOI | MR | Zbl

[7] Burlutskaya M. Sh., Kurdyumov V. P., Lukonina A.S., Khromov A.P., “Funktsionalno-differentsialnyi operator s involyutsiei”, Dokl. AN, 414:4 (2007), 443–446 | MR | Zbl

[8] Burlutskaya M. Sh., Khromov A. P., “O skhodimosti srednikh Rissa razlozhenii po sobstvennym funktsiyam funktsionalno-differentsialnogo operatora na grafe-tsikle”, Izv. Sarat. un-ta. Ser. Matematika. Mekhanika. Informatika, 7:1 (2007), 3–8

[9] Rapoport I. M., O nekotorykh asimptoticheskikh metodakh v teorii differentsialnykh uravnenii, Izd-vo AN Ukr. SSR, Kiev, 1954, 287 pp. | MR

[10] Rasulov M. L., Metod konturnogo integrala i ego primenenie k issledovaniyu zadach dlya differentsialnykh uravnenii, Nauka, M., 1964, 464 pp. | MR | Zbl

[11] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961, 936 pp. | MR