Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2008_8_1_a0, author = {V. V. Alekseenkov and K. M. Rasulov}, title = {Three-element boundary value problem of {Riemann} type for metaanalytical functions in a circle}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {3--9}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a0/} }
TY - JOUR AU - V. V. Alekseenkov AU - K. M. Rasulov TI - Three-element boundary value problem of Riemann type for metaanalytical functions in a circle JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2008 SP - 3 EP - 9 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a0/ LA - ru ID - ISU_2008_8_1_a0 ER -
%0 Journal Article %A V. V. Alekseenkov %A K. M. Rasulov %T Three-element boundary value problem of Riemann type for metaanalytical functions in a circle %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2008 %P 3-9 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a0/ %G ru %F ISU_2008_8_1_a0
V. V. Alekseenkov; K. M. Rasulov. Three-element boundary value problem of Riemann type for metaanalytical functions in a circle. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a0/
[1] Rasulov K. M., Kraevye zadachi dlya polianaliticheskikh funktsii i nekotorye ikh prilozheniya, Izd-vo SGPU, Smolensk, 1998, 344 pp.
[2] Rasulov K. M., Senchilov V. V., “O reshenii odnoi vidoizmenennoi kraevoi zadachi tipa Rike dlya metaanaliticheskikh funktsii v kruge”, Differentsialnye uravneniya, 41:43 (2005), 415–418 | MR | Zbl
[3] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR
[4] Litvinchuk G. S., Kraevye zadachi i singulyarnye integralnye uravneniya so sdvigom, Nauka, M., 1977, 448 pp. | MR | Zbl
[5] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Nauka, M., 1966, 436 pp.
[6] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR