Three-element boundary value problem of Riemann type for metaanalytical functions in a circle
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 1, pp. 3-9
Cet article a éte moissonné depuis la source Math-Net.Ru
The article is devoted to the investigation of three-element boundary value problem of Riemann type for metaanalytical functions. A constructive method for solution of the problem in a circle was found. It is established that solution of the problem generally consists of solutions of two generalized and two usual scalar boundary value problems of Riemann for analytical functions in a circle.
@article{ISU_2008_8_1_a0,
author = {V. V. Alekseenkov and K. M. Rasulov},
title = {Three-element boundary value problem of {Riemann} type for metaanalytical functions in a circle},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {3--9},
year = {2008},
volume = {8},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a0/}
}
TY - JOUR AU - V. V. Alekseenkov AU - K. M. Rasulov TI - Three-element boundary value problem of Riemann type for metaanalytical functions in a circle JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2008 SP - 3 EP - 9 VL - 8 IS - 1 UR - http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a0/ LA - ru ID - ISU_2008_8_1_a0 ER -
%0 Journal Article %A V. V. Alekseenkov %A K. M. Rasulov %T Three-element boundary value problem of Riemann type for metaanalytical functions in a circle %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2008 %P 3-9 %V 8 %N 1 %U http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a0/ %G ru %F ISU_2008_8_1_a0
V. V. Alekseenkov; K. M. Rasulov. Three-element boundary value problem of Riemann type for metaanalytical functions in a circle. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/ISU_2008_8_1_a0/
[1] Rasulov K. M., Kraevye zadachi dlya polianaliticheskikh funktsii i nekotorye ikh prilozheniya, Izd-vo SGPU, Smolensk, 1998, 344 pp.
[2] Rasulov K. M., Senchilov V. V., “O reshenii odnoi vidoizmenennoi kraevoi zadachi tipa Rike dlya metaanaliticheskikh funktsii v kruge”, Differentsialnye uravneniya, 41:43 (2005), 415–418 | MR | Zbl
[3] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR
[4] Litvinchuk G. S., Kraevye zadachi i singulyarnye integralnye uravneniya so sdvigom, Nauka, M., 1977, 448 pp. | MR | Zbl
[5] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Nauka, M., 1966, 436 pp.
[6] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR