On solvability of certain classes of irregular the second order variation problems
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 7 (2007) no. 2, pp. 32-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work the irregular model $-p(x)u'(x)+p(+0)u'(+0)+\int_0^xu(\tau)\,dQ(\tau)=F(x)-F(0)$ of the Stiltjes string on segment $[0,\ell]$ with boundary conditions $u(0)=u(\ell)=0$ is discussed. The solvability conditions of the mentioned problem are described.
@article{ISU_2007_7_2_a6,
     author = {Yu. V. Pokornyi and Zh. I. Bakhtina and A. S. Ishchenko},
     title = {On solvability of certain classes of irregular the second order variation problems},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {32--36},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2007_7_2_a6/}
}
TY  - JOUR
AU  - Yu. V. Pokornyi
AU  - Zh. I. Bakhtina
AU  - A. S. Ishchenko
TI  - On solvability of certain classes of irregular the second order variation problems
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2007
SP  - 32
EP  - 36
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2007_7_2_a6/
LA  - ru
ID  - ISU_2007_7_2_a6
ER  - 
%0 Journal Article
%A Yu. V. Pokornyi
%A Zh. I. Bakhtina
%A A. S. Ishchenko
%T On solvability of certain classes of irregular the second order variation problems
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2007
%P 32-36
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2007_7_2_a6/
%G ru
%F ISU_2007_7_2_a6
Yu. V. Pokornyi; Zh. I. Bakhtina; A. S. Ishchenko. On solvability of certain classes of irregular the second order variation problems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 7 (2007) no. 2, pp. 32-36. http://geodesic.mathdoc.fr/item/ISU_2007_7_2_a6/

[1] Pokornyi Yu. V., “O differentsialakh Stiltesa v obobschennoi zadache Shturma–Liuvillya”, Dokl. AN, 383:5 (2002), 1–4 | MR

[2] Kats I. S., Krein M. G., “O spektralnykh funktsiyakh struny”, Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968 | MR

[3] Alekseev V. M., Tikhonov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, Gl. red. fiz.-mat. lit., M., 1979, 432 pp. | MR

[4] Pokornyi Yu. V., Zvereva M. B., Shabrov S. A., “O zadache Shturma–Liuvillya dlya razryvnoi struny”, Izv. vuzov. Severokavkaz. region. Estestvennye nauki. Matematika i mekhanika sploshnoi sredy, 2004, Spetsvypusk, 186–191

[5] Pokornyi Yu. V., Shabrov S. A., “Toward a Sturm–Liouville Theory for an Equation With Generalised Coefficient”, J. of Mathematical Sciences, 119:6 (2004), 769–787 | DOI | MR | Zbl

[6] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968 | MR | Zbl