Recovering of a mapping via Jacobi matrix, normalized homogeneous function
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 7 (2007) no. 2, pp. 14-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider system of the differential equations $f'(x)=\Phi(f'(x))M(x)$ with generalized partial derivatives,where $f'(x)$ is a matrix Jacobi of sought mapping, $M$ is a given $n\times n$ matrix-value function with integrable elements, $\Phi$ is a given function of matrices.
@article{ISU_2007_7_2_a3,
     author = {V. V. Egorov},
     title = {Recovering of a mapping via {Jacobi} matrix, normalized homogeneous function},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {14--20},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2007_7_2_a3/}
}
TY  - JOUR
AU  - V. V. Egorov
TI  - Recovering of a mapping via Jacobi matrix, normalized homogeneous function
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2007
SP  - 14
EP  - 20
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2007_7_2_a3/
LA  - ru
ID  - ISU_2007_7_2_a3
ER  - 
%0 Journal Article
%A V. V. Egorov
%T Recovering of a mapping via Jacobi matrix, normalized homogeneous function
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2007
%P 14-20
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2007_7_2_a3/
%G ru
%F ISU_2007_7_2_a3
V. V. Egorov. Recovering of a mapping via Jacobi matrix, normalized homogeneous function. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 7 (2007) no. 2, pp. 14-20. http://geodesic.mathdoc.fr/item/ISU_2007_7_2_a3/

[1] Zhuravlev I. V., “O vosstanovlenii otobrazheniya po normirovannoi matritse Yakobi”, Sib. mat. zhurn., 33:5 (1992), 53–61 | MR | Zbl

[2] Zhuravlev I. V., “K zadache vosstanovleniya otobrazheniya po normirovannoi matritse”, Sib. mat. zhurn., 34:2 (1993), 77–87 | MR | Zbl

[3] Egorov V. V., O sistemakh differentsialnykh uravnenii, voznikayuschikh v teorii kvazikonformnykh otobrazhenii, Dep. v VINITI No 2777–V97, Volgograd, 1997, 16 pp.

[4] Egorov V. V., Ob integriruemosti odnoi sistemy differentsialnykh uravnenii s chastnymi proizvodnymi, voznikayuschei v teorii kvazikonformnykh otobrazhenii, Dep. v VINITI No 1816–V98, Volgograd, 1998, 15 pp.

[5] Egorov V. V., “O sisteme differentsialnykh uravnenii, opisyvayuschei otobrazheniya s ogranichennym iskazheniem”, Vestn. VolGU. Ser. 1 (Matematika), 8, Izd-vo VolGU, Volgograd, 2004

[6] Shushkov D. V., “Vosstanovlenie otobrazheniya po kharakteristike $f'(x)/||f'(x)||$”, Tr. po geometrii i analizu, Izd-vo In-ta mat., Novosibirsk, 2003

[7] Sadovnichii V. A., Teoriya operatorov, Izd-vo MGU, M., 1986, 368 pp. | MR

[8] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950

[9] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[10] Burenkov V. I., “Integralnye predstavleniya Soboleva i formula Teilora”, Tr. MIAN SSSR, 131, 1974, 33–38 | MR | Zbl

[11] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR

[12] Goldshtein V. M., Kuzminov V. I., Shvedov I. A., “Differentsialnye formy na lipshetsevom mnogoobrazii”, Sib. mat. zhurn., 23:2 (1982), 16–30 | MR

[13] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR