Recovering of a mapping via Jacobi matrix, normalized homogeneous function
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 7 (2007) no. 2, pp. 14-20

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider system of the differential equations $f'(x)=\Phi(f'(x))M(x)$ with generalized partial derivatives,where $f'(x)$ is a matrix Jacobi of sought mapping, $M$ is a given $n\times n$ matrix-value function with integrable elements, $\Phi$ is a given function of matrices.
@article{ISU_2007_7_2_a3,
     author = {V. V. Egorov},
     title = {Recovering of a mapping via {Jacobi} matrix, normalized homogeneous function},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {14--20},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2007_7_2_a3/}
}
TY  - JOUR
AU  - V. V. Egorov
TI  - Recovering of a mapping via Jacobi matrix, normalized homogeneous function
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2007
SP  - 14
EP  - 20
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2007_7_2_a3/
LA  - ru
ID  - ISU_2007_7_2_a3
ER  - 
%0 Journal Article
%A V. V. Egorov
%T Recovering of a mapping via Jacobi matrix, normalized homogeneous function
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2007
%P 14-20
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2007_7_2_a3/
%G ru
%F ISU_2007_7_2_a3
V. V. Egorov. Recovering of a mapping via Jacobi matrix, normalized homogeneous function. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 7 (2007) no. 2, pp. 14-20. http://geodesic.mathdoc.fr/item/ISU_2007_7_2_a3/