Finite element model of the carotid bifurcation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 7 (2007) no. 1, pp. 48-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

A fluid-solid interaction problem of a pulsation of the human carotid bifurcation was solved using finite element method. Hyperelastic orthotropic wall model that accounts for the carotid histological structure and in-vivo vessel geometry obtained from the CT-imaging were utilized. In-vivo blood flow boundary conditions for the problem were determined using Doppler Ultrasound. Results of the modeling were analyzed for correlation between zones of low wall shear stress (WSS) for blood flow, high cyclic strain (CS) and high effective stress (ES) for vessel wall with the zones of atherosclerosis formation on the CT-angiogram.
@article{ISU_2007_7_1_a9,
     author = {A. V. Kamenskiy},
     title = {Finite element model of the carotid bifurcation},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {48--54},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a9/}
}
TY  - JOUR
AU  - A. V. Kamenskiy
TI  - Finite element model of the carotid bifurcation
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2007
SP  - 48
EP  - 54
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a9/
LA  - ru
ID  - ISU_2007_7_1_a9
ER  - 
%0 Journal Article
%A A. V. Kamenskiy
%T Finite element model of the carotid bifurcation
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2007
%P 48-54
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a9/
%G ru
%F ISU_2007_7_1_a9
A. V. Kamenskiy. Finite element model of the carotid bifurcation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 7 (2007) no. 1, pp. 48-54. http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a9/

[1] Holzapfel G. A., Gasser T. C., “A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models”, J. of Elasticity, 61 (2000), 1–48 | DOI | MR | Zbl

[2] Rhodin J. A. G., “Architecture of the Vessel Wall”, Handbook pf Physiology, The Cardiovascular System, v. 2, eds. H. V. Sparks, Jr. D. F. Bohr, A. D. Somlyo, S. R. Geiger, Amer. Physiological Society, Bethesda. Maryland, 1980, 1–31

[3] Weizsacker H. W., Pinto J. G., “Isotropy and Anisotropy of the Arterial Wall”, J. of Biomech., 21 (1988), 477–487 | DOI

[4] Delfino A., Analysis of Stress Field in a Model of the Human Carotid Bifurcation, PhD thesis No 1599, Lausanne, 1996 | Zbl

[5] Spencer A. J. M., Deformations of Fibre-Reinforced Materials, Clarendon Press, Oxford, 1972 | Zbl

[6] Kasyanov V. A., Knets I. V., “Funktsiya energii deformatsii krupnykh krovenosnykh sosudov cheloveka”, Mekhanika polimerov, 1 (1974), 122–128

[7] Humphrey J. D., Strumpf R. K., Yin F. C. P., “Determination of a Constitutive Relation for Passive Myocardium”, J. of Biomechanical Engineering, 112 (1990), 333–346 | DOI

[8] Fung Y. C., Fronek K., Patitucci P., “Pseudoelasticity of Arteries and the Choice of its Mathematical”, Expression Amer. J. Physiol., 237 (1979), H620–H631

[9] Harington I., de Botton G., Gasser T. C., Holzapfel G. A., “How to Incorporate Collagen Fibers Orientations in an Arterial Bifurcation?”, Proc. of the 3rd IASTED Int Conference on Biomechanics (September 7–9. 2005. Benidorm, Spain), 2006

[10] Leung J. H., Wright A. R., Cheshire N. et al., “Fluid Structure Interaction of Patient Specific Abdominal Aortic Aneurysms: a Comparison with Solid Stress Models”, BioMedical Engineering OnLine, 5:33 (2006)

[11] Younis H. F., Kaazempur–Mofrad M. R., Chan R. C. et al., “Hemodynamics and Wall Mechanics in Human Carotid Bifurcation and its Consequences for Atherosclerosis: Investigation of Inter-Individual Variation”, Biomechan. Model Mechanobiol, 3 (2004), 17–32 | DOI

[12] Delfino A., Stergiopulos N., Moore J. E. et al., “Residual Strain Effects on the Stress Field in a Thick Wall Finite Element Model of the Human Carotid Bifurcation”, J. of Biomech., 30:8 (1997), 777–786 | DOI

[13] Malek A. M., Alper S. L., Izumo S., “Hemodynamics Shear Stress and its Role in Atherosclerosis”, JAMA, 282:21 (1999), 2035–2042 | DOI

[14] Howard B. V., Macarak E. I., Gunson D., Kefalides N. A., “Characterization of the Collagen Synthesized by Endothelial Cells in Culture”, Proc. Nat. Acad. Sci. USA, 73 (1976), 2361–2364 | DOI

[15] Haust M. D., Arterial Endothelium and its Potentials, Plenum Press, N.Y., 1977, 34 pp.

[16] Weinbaum S., Tzeghai G., Ganatos P. et al., “Effect of Cell Turnover and Leaky Junctions on Arterial Macromolecular Transport”, Amer. J. Physiol., 248 (1985), H945–H960

[17] Tropea B. I., Schwarzacher S. P., Chang A. et al., “Reduction of Aortic Wall Motion Inhibits Hypertension-Mediated Experimental Atherosclerosis”, Artherioscler. Thromb. Vasc. Biol., 20 (2000), 2127–2133 | DOI