Basis conditions for systems of translates and dilates of functions in $L_p$-spaces
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 7 (2007) no. 1, pp. 39-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a family of translates and dilates of function (or in other words family of wavelets on finite interval) in Lebesgue spaces. The explicit expressions for biorthogonal family are given. The theorem of equiconvergence for biorthogonal wavelets series and Fourier–Haar series is established.
@article{ISU_2007_7_1_a7,
     author = {P. A. Terekhin},
     title = {Basis conditions for systems of translates and dilates of functions in $L_p$-spaces},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {39--44},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a7/}
}
TY  - JOUR
AU  - P. A. Terekhin
TI  - Basis conditions for systems of translates and dilates of functions in $L_p$-spaces
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2007
SP  - 39
EP  - 44
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a7/
LA  - ru
ID  - ISU_2007_7_1_a7
ER  - 
%0 Journal Article
%A P. A. Terekhin
%T Basis conditions for systems of translates and dilates of functions in $L_p$-spaces
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2007
%P 39-44
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a7/
%G ru
%F ISU_2007_7_1_a7
P. A. Terekhin. Basis conditions for systems of translates and dilates of functions in $L_p$-spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 7 (2007) no. 1, pp. 39-44. http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a7/

[1] Chanturiya Z. A., “O bazisakh prostranstva nepreryvnykh funktsii”, Mat. sbornik, 88:4 (1972), 589–608 | Zbl

[2] Saburova T. N., “O bazisakh v $C[0,1]$ tipa Fabera–Shaudera”, Teoriya funktsii i priblizhenii, Tr. tretei Sarat. zimnei shkoly (Saratov, 1986), Ch. 3, Saratov, 1988, 44–46

[3] Terekhin P. A., “Bazisy Rissa, porozhdennye szhatiyami i sdvigami funktsii na otrezke”, Mat. zametki, 72:4 (2002), 547–560 | DOI | MR | Zbl