Method of hermite interpolation by polynomials of the third degree on a~triangle using mixed derivatives
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 7 (2007) no. 1, pp. 23-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

There is a sine of the minimum angle of the triangle in the denominator of estimation of inaccuracy of interpolation for derivative of function in building of triangular finite elements. The way of method of Hermite interpolation by polynomials of the third degree on a triangle suggested by N. V. Baidakova is free of minimum angle condition for approximation of any derivatives. There is two-dimenetional cubic element in finite element method equal to element of N. V. Baidakova in this paper. The considered estimations of inaccuracy for function derivatives in the directions up to derivative of order three in inclusive is free of triangle geometry. The unimprovable of calculated estimations of inaccuracy of approximations of derivatives in directions is proved in accuracy up to absolute constants.
@article{ISU_2007_7_1_a4,
     author = {J. V. Matveeva},
     title = {Method of hermite interpolation by polynomials of the third degree on a~triangle using mixed derivatives},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {23--27},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a4/}
}
TY  - JOUR
AU  - J. V. Matveeva
TI  - Method of hermite interpolation by polynomials of the third degree on a~triangle using mixed derivatives
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2007
SP  - 23
EP  - 27
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a4/
LA  - ru
ID  - ISU_2007_7_1_a4
ER  - 
%0 Journal Article
%A J. V. Matveeva
%T Method of hermite interpolation by polynomials of the third degree on a~triangle using mixed derivatives
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2007
%P 23-27
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a4/
%G ru
%F ISU_2007_7_1_a4
J. V. Matveeva. Method of hermite interpolation by polynomials of the third degree on a~triangle using mixed derivatives. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 7 (2007) no. 1, pp. 23-27. http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a4/

[1] Baidakova N. V., “Ob odnom sposobe ermitovoi interpolyatsii mnogochlenami tretei stepeni na treugolnike”, Teoriya funktsii, Sb. nauch. trudov, Trudy Instituta matematiki i mekhaniki, 11, no. 2, Izd-vo UrO RAN, Ekaterinburg, 2005, 47–52 | MR

[2] Zenisek A., “Maximum-angle condition and triangular finite elements of hermite type”, Math. Comp., 64:211 (1995), 929–941 | DOI | MR | Zbl

[3] Subbotin Yu. N., “Novyi kubicheskii element v MKE”, Teoriya funktsii, Sb. nauch. trudov, Trudy Instituta matematiki i mekhaniki, 11, no. 2, Izd-vo UrO RAN, Ekaterinburg, 2005, 120–130

[4] Kupriyanova Yu. V., “Ob otsenke proizvodnoi po napravleniyu Ermitova splaina na treugolnike”, Matematika. Mekhanika: Sb. nauch. tr., 8, Izd-vo Sarat. un-ta, Saratov, 2006, 59–61

[5] Kupriyanova Yu. V., “Ob approksimatsii proizvodnykh interpolyatsionnogo mnogochlena po napravleniyam na treugolnike”, Sovr. metody teorii funktsii i smezh. problemy, Materialy konf., Voronezh, 2007, 120–121