Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2007_7_1_a4, author = {J. V. Matveeva}, title = {Method of hermite interpolation by polynomials of the third degree on a~triangle using mixed derivatives}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {23--27}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a4/} }
TY - JOUR AU - J. V. Matveeva TI - Method of hermite interpolation by polynomials of the third degree on a~triangle using mixed derivatives JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2007 SP - 23 EP - 27 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a4/ LA - ru ID - ISU_2007_7_1_a4 ER -
%0 Journal Article %A J. V. Matveeva %T Method of hermite interpolation by polynomials of the third degree on a~triangle using mixed derivatives %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2007 %P 23-27 %V 7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a4/ %G ru %F ISU_2007_7_1_a4
J. V. Matveeva. Method of hermite interpolation by polynomials of the third degree on a~triangle using mixed derivatives. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 7 (2007) no. 1, pp. 23-27. http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a4/
[1] Baidakova N. V., “Ob odnom sposobe ermitovoi interpolyatsii mnogochlenami tretei stepeni na treugolnike”, Teoriya funktsii, Sb. nauch. trudov, Trudy Instituta matematiki i mekhaniki, 11, no. 2, Izd-vo UrO RAN, Ekaterinburg, 2005, 47–52 | MR
[2] Zenisek A., “Maximum-angle condition and triangular finite elements of hermite type”, Math. Comp., 64:211 (1995), 929–941 | DOI | MR | Zbl
[3] Subbotin Yu. N., “Novyi kubicheskii element v MKE”, Teoriya funktsii, Sb. nauch. trudov, Trudy Instituta matematiki i mekhaniki, 11, no. 2, Izd-vo UrO RAN, Ekaterinburg, 2005, 120–130
[4] Kupriyanova Yu. V., “Ob otsenke proizvodnoi po napravleniyu Ermitova splaina na treugolnike”, Matematika. Mekhanika: Sb. nauch. tr., 8, Izd-vo Sarat. un-ta, Saratov, 2006, 59–61
[5] Kupriyanova Yu. V., “Ob approksimatsii proizvodnykh interpolyatsionnogo mnogochlena po napravleniyam na treugolnike”, Sovr. metody teorii funktsii i smezh. problemy, Materialy konf., Voronezh, 2007, 120–121