About Dirichle's rows whith finite-valued multiplicative coefficients, satisfy the Riman's type functional equation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 7 (2007) no. 1, pp. 13-15
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper the class of absolutely convergent on the half-plane $\sigma>1$ Dirichlet series with multiplicative finite-valued coefficients is considered. We prove that only Dirichlet $L$-functions are solutions of a functional Riemann type equation.
@article{ISU_2007_7_1_a2,
author = {V. V. Krivobok},
title = {About {Dirichle's} rows whith finite-valued multiplicative coefficients, satisfy the {Riman's} type functional equation},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {13--15},
year = {2007},
volume = {7},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a2/}
}
TY - JOUR AU - V. V. Krivobok TI - About Dirichle's rows whith finite-valued multiplicative coefficients, satisfy the Riman's type functional equation JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2007 SP - 13 EP - 15 VL - 7 IS - 1 UR - http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a2/ LA - ru ID - ISU_2007_7_1_a2 ER -
%0 Journal Article %A V. V. Krivobok %T About Dirichle's rows whith finite-valued multiplicative coefficients, satisfy the Riman's type functional equation %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2007 %P 13-15 %V 7 %N 1 %U http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a2/ %G ru %F ISU_2007_7_1_a2
V. V. Krivobok. About Dirichle's rows whith finite-valued multiplicative coefficients, satisfy the Riman's type functional equation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 7 (2007) no. 1, pp. 13-15. http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a2/
[1] Chandrasekkharan K., Arifmeticheskie funktsii, Nauka, M., 1975, 272 pp. | MR
[2] Voronin S. I., Karatsuba A. A., Dzeta-funktsiya Rimana, Fizmatgiz, M., 1994, 376 pp. | MR
[3] Kuznetsov V. N., Setsinskaya E. V., Krivobok V. V., “O ryadakh Dirikhle, opredelyayuschikh tselye funktsii pervogo poryadka”, Issledovaniya po algebre, teorii chisel, funktsionalnomu analizu i smezhnym voprosam: Mezhvuz. sb. nauch. tr., 3, Saratov, 2005, 47–58
[4] Biberbakh L., Analiticheskoe prodolzhenie, Nauka, M., 1967, 239 pp. | MR
[5] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967, 511 pp. | MR