Modelling of microcirculation: unsteady interstitial fluid flow in tissue
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 7 (2007) no. 1, pp. 69-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

Microcirculation is a key element of human metabolism. Every pathological condition of human organism causes different changes in blood flow. And vice versa, many of the microcirculatory disorders appear before and stay longer after then other disease symptoms. Modelling of microcirculation help us to understand complex interconnected metabolic processes, to find out causes of different diseases and to offer ways of their treatment.
@article{ISU_2007_7_1_a12,
     author = {N. S. Shabrykina},
     title = {Modelling of microcirculation: unsteady interstitial fluid flow in tissue},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {69--73},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a12/}
}
TY  - JOUR
AU  - N. S. Shabrykina
TI  - Modelling of microcirculation: unsteady interstitial fluid flow in tissue
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2007
SP  - 69
EP  - 73
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a12/
LA  - ru
ID  - ISU_2007_7_1_a12
ER  - 
%0 Journal Article
%A N. S. Shabrykina
%T Modelling of microcirculation: unsteady interstitial fluid flow in tissue
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2007
%P 69-73
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a12/
%G ru
%F ISU_2007_7_1_a12
N. S. Shabrykina. Modelling of microcirculation: unsteady interstitial fluid flow in tissue. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 7 (2007) no. 1, pp. 69-73. http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a12/

[1] Popel A., Pittman R., “Mechanics and transport in the microcirculation”, Biomechanics: principles and applications, eds. D. J. Schneck, J. F. Bronzino, CRT Press, L., N.Y., Washington, 2002

[2] Nyashin Y. I., Nyashin M. Y., Shabrykina N. S., “Models of microcirculation and extravascular fluid exchange”, Russian J. of Biomechanics, 6:2 (2002), 62–77

[3] Walburn F. J., Schneck D. J., “A constitutive equation for whole human blood”, Biorheology, 13 (1976), 201–210

[4] Swartz M. A., Kaipainen A., Netti P. A., “Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation”, J. of Biomechanics, 32 (1999), 1297–1307 | DOI

[5] Shabrykina N. S., “Matematicheskoe modelirovanie mikrotsirkulyatornykh protsessov”, Ros. zhurn. biomekhaniki, 9:3 (2005), 70–88

[6] Starling E. H., “On the adsorbtion of fluid from interstitial spaces”, J. Physiol., 19 (1896), 312–326

[7] Shabrykina N. S., “Matematicheskoe modelirovanie mikrotsirkulyatornykh protsessov: nestatsionarnaya model”, Ros. zhurn. biomekhaniki, 10:4 (2006), 70–83

[8] Fung Y. C., Biomechanics: mechanical properties of living tissues, Springer-Verlag, N.Y., Berlin, 1993

[9] Netti P. A., Baxter L. T., Boucher Y., Skalak R., Jain R. K., “Macro- and microscopic fluid transport in living tissues: application to solid tumors”, AIChE J., 43 (1997), 818–834 | DOI

[10] Gurfinkel Yu. I., “Computer capillaroscopy as a channel of local visualization, noninvasive diagnostics, and screening of substances in circulating blood”, Optical Technologies in Biophysics and Medicine, v. II, Proc. SPIE, 4241, ed. V. V. Tuchin, 2000, 467–472 | DOI

[11] Fedorovich A. A., “Kapillyarnaya gemodinamika v eponikhii verkhnei konechnosti”, Regionarnoe krovoobraschenie i mikrotsirkulyatsiya, 5:1 (2006), 20–28