Mathematical simulating thermal exfoliation of graphite
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 7 (2007) no. 1, pp. 63-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

There has been examined a mathematical model of item obtaining from the oxidized graphite powder by means of exfoliating at heating in a metal mould. Temperature equaling discovered in a numerical experiment by the ultimate stage of the process allows to build asymptotic expansion of the solution in one-dimensional case. Temperature- and speeds fields in two-dimensional axisymmetric case are numerically defined by the shock-capturing method.
@article{ISU_2007_7_1_a11,
     author = {V. Yu. Ol'shanskii and K. G. Bakhtin and V. Yu. Mikhailov and Y. N. Nagar and A. V. Serebrjakov},
     title = {Mathematical simulating thermal exfoliation of graphite},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {63--69},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a11/}
}
TY  - JOUR
AU  - V. Yu. Ol'shanskii
AU  - K. G. Bakhtin
AU  - V. Yu. Mikhailov
AU  - Y. N. Nagar
AU  - A. V. Serebrjakov
TI  - Mathematical simulating thermal exfoliation of graphite
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2007
SP  - 63
EP  - 69
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a11/
LA  - ru
ID  - ISU_2007_7_1_a11
ER  - 
%0 Journal Article
%A V. Yu. Ol'shanskii
%A K. G. Bakhtin
%A V. Yu. Mikhailov
%A Y. N. Nagar
%A A. V. Serebrjakov
%T Mathematical simulating thermal exfoliation of graphite
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2007
%P 63-69
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a11/
%G ru
%F ISU_2007_7_1_a11
V. Yu. Ol'shanskii; K. G. Bakhtin; V. Yu. Mikhailov; Y. N. Nagar; A. V. Serebrjakov. Mathematical simulating thermal exfoliation of graphite. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 7 (2007) no. 1, pp. 63-69. http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a11/

[1] Finaenov A. I., Trifonov A. I., Zhuravlev A. M., Yakovlev A. V., “Oblasti primeneniya i poluchenie termorasshirennogo grafita”, Vestnik SGTU, 1(1) (2003), 75–85

[2] Olshanskii V. Yu., “Matematicheskoe modelirovanie protsessa termorasshireniya grafita s uchetom fazovykh perekhodov”, IX Vserossiiskii s'ezd po teoreticheskoi i prikladnoi mekhanike, Sb. annotats. dokl. (N. Novgorod, 23–28 avgusta 2006 g.), N. Novgorod, 2006, 141

[3] Samarskii A. A., Vabischevich P. N., Vychislitelnaya teploperedacha, M., 2003, 784 pp.

[4] Olshanskii V. Yu., Mikhailov V. Yu., Serebryakov A. V., “Rezultaty primeneniya metoda vypryamleniya frontov pri modelirovanii termicheskogo rasschepleniya grafita”, Vestnik SGTU, 2(12):1 (2006), 19–24

[5] Olshanskii V. Yu., Serebryakov A. V., Bakhtin K. G., “Metod skvoznogo scheta v zadache nagreva mnogosloinoi sredy s podvizhnymi vnutrennimi granitsami”, Problemy prochnosti elementov konstruktsii pod deistviem nagruzok i rabochikh sred, Mezhvuz. nauch. sb., Saratov, 2004, 87–91

[6] Budak B. M., Vasilev F. P., Uspenskii A. B., “Raznostnye metody resheniya nekotorykh kraevykh zadach tipa Stefana”, Chislennye metody v gazovoi dinamike, Sb. rabot VTs MGU, M., 1965, 139–183 | MR

[7] Olshanskii V. Yu., Nagar Yu. N., “O dvizhenii granits razdela v zadache o termorasscheplenii grafita”, Matematicheskie metody i modeli v prikladnykh zadachakh nauki i tekhniki, Tr. mezhdunar. konf. “Kontinualnye algebraicheskie logiki, ischisleniya i neiroinformatika v nauke i tekhnike”, Ulyanovsk, 2006, 244–246

[8] Olshanskii V. Yu., Nagar Yu. N., “Issledovanie zakona dvizheniya granits razdela v zadache o termorasscheplenii grafita”, Matematicheskie metody v tekhnike i tekhnologiyakh, Sb. tr. XIV Mezhdunar. nauch. konf., Voronezh, 2006, 91–93

[9] Samarskii A. A., Moiseenko B. D., “Ekonomichnaya skhema skvoznogo scheta dlya mnogomernoi zadachi Stefana”, Zhurn. vychislitelnoi matematiki i matematicheskoi fiziki, 5:5 (1965), 816–827 | MR

[10] Bakhtin K. G., Olshanskii V. Yu., “Raschet dvizheniya granitsy razdela v zadache termorasshireniya grafita pri uchete konvektivnykh chlenov”, Vestnik SGTU, 3(15):2 (2006), 7–12

[11] Samarskii A. A., Vabischevich P. N., Additivnye skhemy dlya zadach matematicheskoi fiziki, M., 2001, 319 pp.

[12] Olshanskii V. Yu., Serebryakov A. V., Mikhailov V. Yu., “Raschet dvizheniya granits razdela komponent v odnoi modeli teplomassoperenosa pri termicheskom rasscheplenii grafita”, Matematika. Mekhanika: Sb. nauch. tr., 7, Saratov, 2005, 24–28

[13] Olshanskii V. Yu., Nagar Yu. N., “Dvizhenie granitsy razdela pri znachitelnom otlichii plotnosti agregatnykh sostoyanii v zadache o termorasscheplenii grafita”, Problemy prochnosti elementov konstruktsii pod deistviem nagruzok i rabochikh sred, Mezhvuz. nauch. sb., Saratov, 2005, 72–76