Criteria of universality finite determined machine for machines without loss of informating class
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1-2, pp. 99-107
Cet article a éte moissonné depuis la source Math-Net.Ru
Fiite determined machine is one of the most popular mathematical models of complex discrete systems. ln this article possibilities of the application generаble set of automate transformation groups are investigated. lt is considered relatively to the decision of denumerability problem. Approach to а organization goal-directed behavior problem decision in class of complex discrete systems described bу one-to-one transformations (without loss of information) is offer in this scientific work. The main result of this work is definition the form of automate substitutions and conditions of automate universality for complex systems without loss of information.
@article{ISU_2005_5_1-2_a9,
author = {N. S. Vagarina},
title = {Criteria of universality finite determined machine for machines without loss of informating class},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {99--107},
year = {2005},
volume = {5},
number = {1-2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2005_5_1-2_a9/}
}
TY - JOUR AU - N. S. Vagarina TI - Criteria of universality finite determined machine for machines without loss of informating class JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2005 SP - 99 EP - 107 VL - 5 IS - 1-2 UR - http://geodesic.mathdoc.fr/item/ISU_2005_5_1-2_a9/ LA - ru ID - ISU_2005_5_1-2_a9 ER -
%0 Journal Article %A N. S. Vagarina %T Criteria of universality finite determined machine for machines without loss of informating class %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2005 %P 99-107 %V 5 %N 1-2 %U http://geodesic.mathdoc.fr/item/ISU_2005_5_1-2_a9/ %G ru %F ISU_2005_5_1-2_a9
N. S. Vagarina. Criteria of universality finite determined machine for machines without loss of informating class. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1-2, pp. 99-107. http://geodesic.mathdoc.fr/item/ISU_2005_5_1-2_a9/
[1] M. A. Arbib (red.), Algebraicheskaya teoriya avtomatov, yazykov i polugrupp, per. s angl., M., 1975
[2] Bogomolov A. M., Sytnik A. A., Tverdokhlebov V. A., Avtomatnye modeli i rekursivnyi konstruktivizm, Saratov, 1992
[3] Kostrikin A. I., Vvedenie v algebru, M., 1977 | MR
[4] Pikar S., “O bazisakh simmetricheskoi gruppy”, Kiberneticheskii sbornik, 1965, no. 1
[5] Sytnik A. A., “Metody i modeli vosstanovleniya povedeniya avtomatov”, Avtomatika i telemekhanika, 1992, no. 11
[6] Sytnik A. A., Posohina N. I., “On some methods of discret systems behaviour simulation”, CASYS'97: The 1st Intem. Conf. on computing anticipatory systems (Liege, 1997)