Оп regularity of self-adjoint boundary conditions
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1-2, pp. 48-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

ln this paper we expound the favourabe decision of Кamke's (Камке) hypothesis that self-adjoint boundary conditions are regular and we also establish an analogue of Jordan–Dirichlet theorem оп uniform convergence of trigonometric Fourier series for the case of the expansions in eigen functions of self-adjoint integral operators from the certain class.
@article{ISU_2005_5_1-2_a4,
     author = {A. M. Minkin and A. P. Khromov},
     title = {{\CYRO}{\cyrp} regularity of self-adjoint boundary conditions},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {48--61},
     year = {2005},
     volume = {5},
     number = {1-2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2005_5_1-2_a4/}
}
TY  - JOUR
AU  - A. M. Minkin
AU  - A. P. Khromov
TI  - Оп regularity of self-adjoint boundary conditions
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2005
SP  - 48
EP  - 61
VL  - 5
IS  - 1-2
UR  - http://geodesic.mathdoc.fr/item/ISU_2005_5_1-2_a4/
LA  - ru
ID  - ISU_2005_5_1-2_a4
ER  - 
%0 Journal Article
%A A. M. Minkin
%A A. P. Khromov
%T Оп regularity of self-adjoint boundary conditions
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2005
%P 48-61
%V 5
%N 1-2
%U http://geodesic.mathdoc.fr/item/ISU_2005_5_1-2_a4/
%G ru
%F ISU_2005_5_1-2_a4
A. M. Minkin; A. P. Khromov. Оп regularity of self-adjoint boundary conditions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1-2, pp. 48-61. http://geodesic.mathdoc.fr/item/ISU_2005_5_1-2_a4/

[1] Salaff S., “Regular boundary conditions for ordinary differential operators”, Trans. Amer. Math. Soc., 134:2 (1968), 355–373 | MR | Zbl

[2] Salaff S., “Regular boundary conditions for ordinary differential operators”, Tez. krat. nauch. soobsch., Sektsiya 6, JCM, M., 1966, 15 | MR

[3] Fiedler N., “Zur Regularitat selbstadjungierte Randwertautgaben”, Manuscripta Math., 7:2 (1972), 185–196 | DOI | MR | Zbl

[4] Minkin A. M., “Regulyarnost samosopryazhennykh kraevykh uslovii”, Matem. zametki, 22:6 (1977), 835–846 | MR | Zbl

[5] Minkin A. M., Teorema ravnoskhodimosti dlya differentsialnogo operatora, Dis. ... kand. matem. nauk, Saratov, 1982

[6] Kornev V. V., Khromov A. P., “O ravnoskhodimosti spektralnykh razlozhenii samosopryazhennykh integralnykh operatorov”, Sovremennye metody v teorii kraevykh zadach, v. 2, Voronezh, 2000, 73–82

[7] Kornev V. V., Khromov A. P., “O skhodimosti razlozhenii po sobstvennym funktsiyam v prostranstvakh differentsiruemykh funktsii”, Integralnye preobrazovaniya i spetsialnye funktsii: Inform. byul., 4:1 (2004), 19–31