About closed queuing networks with variable number of queues
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1-2, pp. 138-141
Cet article a éte moissonné depuis la source Math-Net.Ru
Coпsider а closed queueing network with the possibllity of breakdowns at each server. When а breakdown occurs at one server, all customers there are transferred in queue with operational server immediately, and the server is then sent for repair. Steady-state probability of the queue sizes is obtained, and is shown to have а product form solution.
@article{ISU_2005_5_1-2_a13,
author = {I. E. Tananko},
title = {About closed queuing networks with variable number of queues},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {138--141},
year = {2005},
volume = {5},
number = {1-2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2005_5_1-2_a13/}
}
TY - JOUR AU - I. E. Tananko TI - About closed queuing networks with variable number of queues JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2005 SP - 138 EP - 141 VL - 5 IS - 1-2 UR - http://geodesic.mathdoc.fr/item/ISU_2005_5_1-2_a13/ LA - ru ID - ISU_2005_5_1-2_a13 ER -
I. E. Tananko. About closed queuing networks with variable number of queues. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1-2, pp. 138-141. http://geodesic.mathdoc.fr/item/ISU_2005_5_1-2_a13/
[1] Economides A. A., Silvester J. A., “Optimal routing in a network with unreliable links”, IEEE INFOCOM'88 (1988, Aug.), 288–297
[2] Chao X., “A queueing network model with catastrophes and product form solution”, Oper. Res. Let., 18 (1995), 75–79 | DOI | MR | Zbl
[3] Chakka R., Mitrani I., “Approximate solutions for open networks with breakdowns and repairs”, Stochastic Networks — Theory and applications, Chapt. 16, eds. F. P. Kelli, S. Zachary, I. Ziedins, Oxford, 1996, 267–280 | Zbl
[4] Vinod V., Altiok T., “Approximating unreliale queueing networks under the assumption of exponentiality”, J. Oper. Res. Soc., 37:3 (1986), 309–316 | DOI | Zbl
[5] Mitrofanov Yu. I., Osnovy teorii setei massovogo obsluzhivaniya, Saratov, 1993