Spectral theory of random self-adjoint operators
Itogi nauki i tehniki. Seriâ, Teoriâ veroâtnostej. Matematičeskaâ statistika. Teoretičeskaâ kibernetika, Itogi Nauki i Tekhniki. Seriya "Teoriya Veroyatnostei. Matematicheskaya Statistika. Teoreticheskaya Kibernetika", Tome 25 (1987), pp. 3-67
Cet article a éte moissonné depuis la source Math-Net.Ru
The survey reviews recent results on spectral analysis of differential and finite-difference operators with random spatially homogeneous coefficients. The corresponding problems that crystallized in the development of a number of areas in mathematics and related sciences are very rich and diverse. We discuss the traditional problems of spectral analysis, where the use of probabilistic ideas and methods now allows highly detailed spectral analysis to be performed for an essentially broader class of operators, as well as new problems and results obtained in the framework of this theory.
@article{INTV_1987_25_a0,
author = {L. A. Pastur},
title = {Spectral theory of random self-adjoint operators},
journal = {Itogi nauki i tehniki. Seri\^a, Teori\^a vero\^atnostej. Matemati\v{c}eska\^a statistika. Teoreti\v{c}eska\^a kibernetika},
pages = {3--67},
year = {1987},
volume = {25},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTV_1987_25_a0/}
}
TY - JOUR AU - L. A. Pastur TI - Spectral theory of random self-adjoint operators JO - Itogi nauki i tehniki. Seriâ, Teoriâ veroâtnostej. Matematičeskaâ statistika. Teoretičeskaâ kibernetika PY - 1987 SP - 3 EP - 67 VL - 25 UR - http://geodesic.mathdoc.fr/item/INTV_1987_25_a0/ LA - ru ID - INTV_1987_25_a0 ER -
L. A. Pastur. Spectral theory of random self-adjoint operators. Itogi nauki i tehniki. Seriâ, Teoriâ veroâtnostej. Matematičeskaâ statistika. Teoretičeskaâ kibernetika, Itogi Nauki i Tekhniki. Seriya "Teoriya Veroyatnostei. Matematicheskaya Statistika. Teoreticheskaya Kibernetika", Tome 25 (1987), pp. 3-67. http://geodesic.mathdoc.fr/item/INTV_1987_25_a0/