Second term of the logarithmic asymptotics of path integrals
Itogi nauki i tehniki. Seriâ, Teoriâ veroâtnostej. Matematičeskaâ statistika. Teoretičeskaâ kibernetika, Tome 19 (1982), pp. 127-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the survey results are presented related to the construction of asymptotic expansions of Green's function of the Cauchy problem for the heat equation. The basic attention is devoted to the first two terms of the logarithmic asymptotics which are obtained “locally” by probabilistic methods and “globally” by the method of convolution of the sequence of asymptotic solutions over small time.
@article{INTV_1982_19_a3,
     author = {V. P. Maslov and A. M. Chebotarev},
     title = {Second term of the logarithmic asymptotics of path integrals},
     journal = {Itogi nauki i tehniki. Seri\^a, Teori\^a vero\^atnostej. Matemati\v{c}eska\^a statistika. Teoreti\v{c}eska\^a kibernetika},
     pages = {127--154},
     publisher = {mathdoc},
     volume = {19},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTV_1982_19_a3/}
}
TY  - JOUR
AU  - V. P. Maslov
AU  - A. M. Chebotarev
TI  - Second term of the logarithmic asymptotics of path integrals
JO  - Itogi nauki i tehniki. Seriâ, Teoriâ veroâtnostej. Matematičeskaâ statistika. Teoretičeskaâ kibernetika
PY  - 1982
SP  - 127
EP  - 154
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTV_1982_19_a3/
LA  - ru
ID  - INTV_1982_19_a3
ER  - 
%0 Journal Article
%A V. P. Maslov
%A A. M. Chebotarev
%T Second term of the logarithmic asymptotics of path integrals
%J Itogi nauki i tehniki. Seriâ, Teoriâ veroâtnostej. Matematičeskaâ statistika. Teoretičeskaâ kibernetika
%D 1982
%P 127-154
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTV_1982_19_a3/
%G ru
%F INTV_1982_19_a3
V. P. Maslov; A. M. Chebotarev. Second term of the logarithmic asymptotics of path integrals. Itogi nauki i tehniki. Seriâ, Teoriâ veroâtnostej. Matematičeskaâ statistika. Teoretičeskaâ kibernetika, Tome 19 (1982), pp. 127-154. http://geodesic.mathdoc.fr/item/INTV_1982_19_a3/