Discrete extremal problems
Itogi nauki i tehniki. Seriâ, Teoriâ veroâtnostej. Matematičeskaâ statistika. Teoretičeskaâ kibernetika, Itogi Nauki i Tekhniki. Seriya "Teoriya Veroyatnostei. Matematicheskaya Statistika. Teoreticheskaya Kibernetika", Tome 16 (1979), pp. 39-101
Cet article a éte moissonné depuis la source Math-Net.Ru
Precise and heuristic algorithms for solving various classes of discrete extremal problems are considered as are the relations between the class of discrete extremal problems and linear programming and are extremal problems from the point of view of the theory of polynomial completeness. A class of bottleneck optimization problems and stability in discrete extremal problems with a linear object function are also considered.
@article{INTV_1979_16_a1,
author = {V. K. Leont'ev},
title = {Discrete extremal problems},
journal = {Itogi nauki i tehniki. Seri\^a, Teori\^a vero\^atnostej. Matemati\v{c}eska\^a statistika. Teoreti\v{c}eska\^a kibernetika},
pages = {39--101},
year = {1979},
volume = {16},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTV_1979_16_a1/}
}
V. K. Leont'ev. Discrete extremal problems. Itogi nauki i tehniki. Seriâ, Teoriâ veroâtnostej. Matematičeskaâ statistika. Teoretičeskaâ kibernetika, Itogi Nauki i Tekhniki. Seriya "Teoriya Veroyatnostei. Matematicheskaya Statistika. Teoreticheskaya Kibernetika", Tome 16 (1979), pp. 39-101. http://geodesic.mathdoc.fr/item/INTV_1979_16_a1/