Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_237_a1, author = {L. D. Dreglea Sidorov and N. A. Sidorov}, title = {The {Cauchy} problem with a parameter perturbed by a linear functional}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {10--17}, publisher = {mathdoc}, volume = {237}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_237_a1/} }
TY - JOUR AU - L. D. Dreglea Sidorov AU - N. A. Sidorov TI - The Cauchy problem with a parameter perturbed by a linear functional JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 10 EP - 17 VL - 237 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_237_a1/ LA - ru ID - INTO_2024_237_a1 ER -
%0 Journal Article %A L. D. Dreglea Sidorov %A N. A. Sidorov %T The Cauchy problem with a parameter perturbed by a linear functional %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 10-17 %V 237 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_237_a1/ %G ru %F INTO_2024_237_a1
L. D. Dreglea Sidorov; N. A. Sidorov. The Cauchy problem with a parameter perturbed by a linear functional. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 3, Tome 237 (2024), pp. 10-17. http://geodesic.mathdoc.fr/item/INTO_2024_237_a1/
[1] Bryuno A. D., Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Nauka, 1998
[2] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969
[3] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GITTL, M., 1956
[4] Nelineinyi analiz i nelineinye differentsialnye uravneniya, eds. Trenogin V. A., Filippov A. F., Nauka, M., 2003
[5] Sidorov N. A., “Yavnaya i neyavnaya parametrizatsiya pri postroenii razvetvlyayuschikhsya reshenii iteratsionnymi metodami”, Mat. sb., 185 (1995), 129–141
[6] Sidorov N. A., Dreglya Sidorov L. R. D., “O reshenii integralnykh uravnenii Gammershteina s nagruzkami i bifurkatsionnymi parametrami”, Izv. Irkutsk. gos. un-ta. Ser. Mat., 43 (2023), 78–90
[7] Sidorov N. A., Dreglya Sidorov L. R. D., “Zadacha Koshi s parametrom, vozmuschennaya lineinym funktsionalom”, Mat. 6 Mezhdunar. konf. «Dinamicheskie sistemy i kompyuternye nauki: teoriya i prilozheniya» (DYSC 2024) (16–20 sentyabrya 2024 g., Irkutsk,), Irkutsk, 2024, 26–28
[8] Gomez J. L., Sampedro J. C., “Bifurcation theory for Fredholm operators”, J. Differ. Equations., 404 (2024), 182–250
[9] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications, Springer, 2002
[10] Sidorov N., Sidorov D., Sinitsyn A., Toward General Theory of Differential-Operator and Kinetic Models, World Scientific Series, Singapore, 2020