The Cauchy problem with a parameter perturbed by a linear functional
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 3, Tome 237 (2024), pp. 10-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a Cauchy problem with a parameter perturbed by a linear functional. For any value of the parameter, the problem has a trivial solution. We obtain necessary and sufficient conditions for values of the parameter such that in their neighborhoods nontrivial solutions in the class of real continuous functions exist. A method of constructing such solutions is proposed.
Keywords: linear functional, Cauchy problem, Newton diagram, Stieltjes integral
Mots-clés : bifurcation point
@article{INTO_2024_237_a1,
     author = {L. D. Dreglea Sidorov and N. A. Sidorov},
     title = {The {Cauchy} problem with a parameter perturbed by a linear functional},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {10--17},
     publisher = {mathdoc},
     volume = {237},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_237_a1/}
}
TY  - JOUR
AU  - L. D. Dreglea Sidorov
AU  - N. A. Sidorov
TI  - The Cauchy problem with a parameter perturbed by a linear functional
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 10
EP  - 17
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_237_a1/
LA  - ru
ID  - INTO_2024_237_a1
ER  - 
%0 Journal Article
%A L. D. Dreglea Sidorov
%A N. A. Sidorov
%T The Cauchy problem with a parameter perturbed by a linear functional
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 10-17
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_237_a1/
%G ru
%F INTO_2024_237_a1
L. D. Dreglea Sidorov; N. A. Sidorov. The Cauchy problem with a parameter perturbed by a linear functional. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 3, Tome 237 (2024), pp. 10-17. http://geodesic.mathdoc.fr/item/INTO_2024_237_a1/

[1] Bryuno A. D., Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Nauka, 1998

[2] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969

[3] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GITTL, M., 1956

[4] Nelineinyi analiz i nelineinye differentsialnye uravneniya, eds. Trenogin V. A., Filippov A. F., Nauka, M., 2003

[5] Sidorov N. A., “Yavnaya i neyavnaya parametrizatsiya pri postroenii razvetvlyayuschikhsya reshenii iteratsionnymi metodami”, Mat. sb., 185 (1995), 129–141

[6] Sidorov N. A., Dreglya Sidorov L. R. D., “O reshenii integralnykh uravnenii Gammershteina s nagruzkami i bifurkatsionnymi parametrami”, Izv. Irkutsk. gos. un-ta. Ser. Mat., 43 (2023), 78–90

[7] Sidorov N. A., Dreglya Sidorov L. R. D., “Zadacha Koshi s parametrom, vozmuschennaya lineinym funktsionalom”, Mat. 6 Mezhdunar. konf. «Dinamicheskie sistemy i kompyuternye nauki: teoriya i prilozheniya» (DYSC 2024) (16–20 sentyabrya 2024 g., Irkutsk,), Irkutsk, 2024, 26–28

[8] Gomez J. L., Sampedro J. C., “Bifurcation theory for Fredholm operators”, J. Differ. Equations., 404 (2024), 182–250

[9] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications, Springer, 2002

[10] Sidorov N., Sidorov D., Sinitsyn A., Toward General Theory of Differential-Operator and Kinetic Models, World Scientific Series, Singapore, 2020