On strong solutions of a $B$-elliptic boundary-value problem and its difference approximation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 2, Tome 236 (2024), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, a finite-difference scheme for a boundary-value problem for a $B$-elliptic equation is constructed. The convergence is examined in the Kipriyanov weight space. An integral balance relation for the exact solution of the original problem is obtained by using Steklov averaging operators. A five-point difference scheme and an a priori estimate for the error are obtained.
Keywords: Bessel operator, Kipriyanov spaces, difference scheme, Steklov averaging operator, strong solution
@article{INTO_2024_236_a0,
     author = {O. P. Barabash},
     title = {On strong solutions of a $B$-elliptic boundary-value problem and its difference approximation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {236},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_236_a0/}
}
TY  - JOUR
AU  - O. P. Barabash
TI  - On strong solutions of a $B$-elliptic boundary-value problem and its difference approximation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 3
EP  - 12
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_236_a0/
LA  - ru
ID  - INTO_2024_236_a0
ER  - 
%0 Journal Article
%A O. P. Barabash
%T On strong solutions of a $B$-elliptic boundary-value problem and its difference approximation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 3-12
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_236_a0/
%G ru
%F INTO_2024_236_a0
O. P. Barabash. On strong solutions of a $B$-elliptic boundary-value problem and its difference approximation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 2, Tome 236 (2024), pp. 3-12. http://geodesic.mathdoc.fr/item/INTO_2024_236_a0/

[1] Katrakhov V. V., Sitnik S. M., “Metod operatorov preobrazovaniya i kraevye zadachi dlya singulyarnykh ellipticheskikh uravnenii”, Sovr. mat. Fundam. napr., 64:2 (2018), 211–426 | DOI | MR

[2] Katrakhova A. A., “Formula Teilora s operatorom Besselya”, Korrektnye kraevye zadachi dlya neklassicheskikh uravnenii matematicheskoi fiziki, In-t mat. im. S. L. Soboleva SO RAN, Novosibirsk, 1981, 96–97

[3] Katrakhova A. A., Singulyarnye kraevye zadachi i priblizhennye metody ikh resheniya, diss. na soisk. uch. step. kand. fiz.-mat. nauk, Voronezh, 1982

[4] Kipriyanov I. A., Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1997 | MR

[5] Kipriyanov I. A., “Preobrazovanie Fure–Besselya i teoremy vlozheniya dlya vesovykh klassov”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR., 89 (1967), 130–213

[6] Lyakhov L. N., V-gipersingulyarnye integraly i ikh prilozheniya k opisaniyu funktsionalnykh klassov Kipriyanova i k integralnym uravneniyam s V-potentsialnymi yadrami, LGPU, Lipetsk, 2007

[7] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983

[8] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR

[9] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Vysshaya shkola, M., 1987

[10] Sitnik S. M., Shishkina E. L., Metod operatorov preobrazovaniya dlya differentsialnykh uravnenii s operatorami Besselya, Fizmatlit, M., 2019

[11] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[12] Tikhonov A. N., Samarskii A. A., “Ob odnorodnykh raznostnykh skhemakh”, Dokl. AN SSSR., 122:4 (1958), 562–565

[13] Courant R., “Variational methods for solution of problems of equilibrium and vibration”, Bull. Am. Math. Soc., 49 (1943), 1–13 | DOI | MR

[14] Muravnik A. B., “Fourier–Bessel transformation of compactly supported non-negative functions and estimates of solutions of singular differential equations”, Funct. Differ. Equations., 8:3 (2001), 353–363 | MR

[15] Shishkina E. L., Sitnik S. M., Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics, Academic Press, London, 2020 | MR