Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_236_a0, author = {O. P. Barabash}, title = {On strong solutions of a $B$-elliptic boundary-value problem and its difference approximation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--12}, publisher = {mathdoc}, volume = {236}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_236_a0/} }
TY - JOUR AU - O. P. Barabash TI - On strong solutions of a $B$-elliptic boundary-value problem and its difference approximation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 3 EP - 12 VL - 236 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_236_a0/ LA - ru ID - INTO_2024_236_a0 ER -
%0 Journal Article %A O. P. Barabash %T On strong solutions of a $B$-elliptic boundary-value problem and its difference approximation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 3-12 %V 236 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_236_a0/ %G ru %F INTO_2024_236_a0
O. P. Barabash. On strong solutions of a $B$-elliptic boundary-value problem and its difference approximation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 2, Tome 236 (2024), pp. 3-12. http://geodesic.mathdoc.fr/item/INTO_2024_236_a0/