Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_236_a0, author = {O. P. Barabash}, title = {On strong solutions of a $B$-elliptic boundary-value problem and its difference approximation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--12}, publisher = {mathdoc}, volume = {236}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_236_a0/} }
TY - JOUR AU - O. P. Barabash TI - On strong solutions of a $B$-elliptic boundary-value problem and its difference approximation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 3 EP - 12 VL - 236 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_236_a0/ LA - ru ID - INTO_2024_236_a0 ER -
%0 Journal Article %A O. P. Barabash %T On strong solutions of a $B$-elliptic boundary-value problem and its difference approximation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 3-12 %V 236 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_236_a0/ %G ru %F INTO_2024_236_a0
O. P. Barabash. On strong solutions of a $B$-elliptic boundary-value problem and its difference approximation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 2, Tome 236 (2024), pp. 3-12. http://geodesic.mathdoc.fr/item/INTO_2024_236_a0/
[1] Katrakhov V. V., Sitnik S. M., “Metod operatorov preobrazovaniya i kraevye zadachi dlya singulyarnykh ellipticheskikh uravnenii”, Sovr. mat. Fundam. napr., 64:2 (2018), 211–426 | DOI | MR
[2] Katrakhova A. A., “Formula Teilora s operatorom Besselya”, Korrektnye kraevye zadachi dlya neklassicheskikh uravnenii matematicheskoi fiziki, In-t mat. im. S. L. Soboleva SO RAN, Novosibirsk, 1981, 96–97
[3] Katrakhova A. A., Singulyarnye kraevye zadachi i priblizhennye metody ikh resheniya, diss. na soisk. uch. step. kand. fiz.-mat. nauk, Voronezh, 1982
[4] Kipriyanov I. A., Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1997 | MR
[5] Kipriyanov I. A., “Preobrazovanie Fure–Besselya i teoremy vlozheniya dlya vesovykh klassov”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR., 89 (1967), 130–213
[6] Lyakhov L. N., V-gipersingulyarnye integraly i ikh prilozheniya k opisaniyu funktsionalnykh klassov Kipriyanova i k integralnym uravneniyam s V-potentsialnymi yadrami, LGPU, Lipetsk, 2007
[7] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983
[8] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR
[9] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Vysshaya shkola, M., 1987
[10] Sitnik S. M., Shishkina E. L., Metod operatorov preobrazovaniya dlya differentsialnykh uravnenii s operatorami Besselya, Fizmatlit, M., 2019
[11] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR
[12] Tikhonov A. N., Samarskii A. A., “Ob odnorodnykh raznostnykh skhemakh”, Dokl. AN SSSR., 122:4 (1958), 562–565
[13] Courant R., “Variational methods for solution of problems of equilibrium and vibration”, Bull. Am. Math. Soc., 49 (1943), 1–13 | DOI | MR
[14] Muravnik A. B., “Fourier–Bessel transformation of compactly supported non-negative functions and estimates of solutions of singular differential equations”, Funct. Differ. Equations., 8:3 (2001), 353–363 | MR
[15] Shishkina E. L., Sitnik S. M., Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics, Academic Press, London, 2020 | MR