Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_235_a9, author = {B. N. Khabibullin}, title = {Uniqueness distributions for holomorphic functions with growth restrictions in the unit disc}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {109--120}, publisher = {mathdoc}, volume = {235}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_235_a9/} }
TY - JOUR AU - B. N. Khabibullin TI - Uniqueness distributions for holomorphic functions with growth restrictions in the unit disc JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 109 EP - 120 VL - 235 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_235_a9/ LA - ru ID - INTO_2024_235_a9 ER -
%0 Journal Article %A B. N. Khabibullin %T Uniqueness distributions for holomorphic functions with growth restrictions in the unit disc %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 109-120 %V 235 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_235_a9/ %G ru %F INTO_2024_235_a9
B. N. Khabibullin. Uniqueness distributions for holomorphic functions with growth restrictions in the unit disc. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 109-120. http://geodesic.mathdoc.fr/item/INTO_2024_235_a9/
[1] Grishin A. F., Malyutin K. G., Trigonometricheski vypuklye funktsii, Yugo-Zap. gos. un-t, Kursk, 2015
[2] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR
[3] Evans L. K., Gariepi K. F., Teoriya mery i tonkie svoistva funktsii, Nauchnaya kniga, Novosibirsk, 2002
[4] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956
[5] Khabibullin B. N., “Teorema edinstvennosti dlya subgarmonicheskikh funktsii konechnogo poryadka”, Mat. sb., 182:6 (1991), 811–827 | Zbl
[6] Khabibullin B. N., Polnota sistem eksponent i mnozhestva edinstvennosti. T. 2, Bashkir. gos. un-t, Ufa, 2012
[7] B. N. Khabibullin, “Raspredeleniya edinstvennosti dlya golomorfnykh funktsii na kruge”, Mat. Mezhdunar. Voronezh. vesennei mat. shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXXV» (Voronezh, 26–30 aprelya 2024 g.), Izdatelskii dom VGU, Voronezh, 2024, 352–354
[8] Khabibullin B. N. , Kudasheva E. G., Muryasov R. R., “Polnota eksponentsialnykh sistem v prostranstvakh funktsii v terminakh perimetra”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 227 (2023), 79–91
[9] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980
[10] Khabibullin B. N., Khabibullin F. B., “Zeros of holomorphic functions in the unit disk and $\rho$-trigonometrically convex functions”, Anal. Math. Phys., 9:3 (2019), 1087–1098 | DOI | MR | Zbl
[11] Khabibullin B. N., Khabibullin F. B., “Zeros of holomorphic functions in the unit ball and subspherical functions”, Lobachevskii J. Math., 40:5 (2019), 648–659 | DOI | MR | Zbl
[12] Ransford Th., Potential Theory in the Complex Plane, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[13] Roberts A. W., Varberg D. E., Convex Functions, Academic Press, New York–London, 1973 | MR | Zbl