Uniqueness distributions for holomorphic functions with growth restrictions in the unit disc
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 109-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish new uniqueness theorems for holomorphic functions in the unit disc with given subharmonic majorants for the logarithms of the modules of these holomorphic functions. The results are formulated in terms of distributions of zeros for these holomorphic functions and Riesz mass distributions for subharmonic majorants. They are based on the new scale of inequalities for Riesz mass distributions of subharmonic functions on the unit disc under given inequalities between these functions.
Keywords: holomorphic function, zero distribution, subharmonic function, Riesz mass distribution, uniqueness theorem, unit disc, convex functions
@article{INTO_2024_235_a9,
     author = {B. N. Khabibullin},
     title = {Uniqueness distributions for holomorphic functions with growth restrictions in the unit disc},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {109--120},
     publisher = {mathdoc},
     volume = {235},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_235_a9/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Uniqueness distributions for holomorphic functions with growth restrictions in the unit disc
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 109
EP  - 120
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_235_a9/
LA  - ru
ID  - INTO_2024_235_a9
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Uniqueness distributions for holomorphic functions with growth restrictions in the unit disc
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 109-120
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_235_a9/
%G ru
%F INTO_2024_235_a9
B. N. Khabibullin. Uniqueness distributions for holomorphic functions with growth restrictions in the unit disc. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 109-120. http://geodesic.mathdoc.fr/item/INTO_2024_235_a9/

[1] Grishin A. F., Malyutin K. G., Trigonometricheski vypuklye funktsii, Yugo-Zap. gos. un-t, Kursk, 2015

[2] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR

[3] Evans L. K., Gariepi K. F., Teoriya mery i tonkie svoistva funktsii, Nauchnaya kniga, Novosibirsk, 2002

[4] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[5] Khabibullin B. N., “Teorema edinstvennosti dlya subgarmonicheskikh funktsii konechnogo poryadka”, Mat. sb., 182:6 (1991), 811–827 | Zbl

[6] Khabibullin B. N., Polnota sistem eksponent i mnozhestva edinstvennosti. T. 2, Bashkir. gos. un-t, Ufa, 2012

[7] B. N. Khabibullin, “Raspredeleniya edinstvennosti dlya golomorfnykh funktsii na kruge”, Mat. Mezhdunar. Voronezh. vesennei mat. shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXXV» (Voronezh, 26–30 aprelya 2024 g.), Izdatelskii dom VGU, Voronezh, 2024, 352–354

[8] Khabibullin B. N. , Kudasheva E. G., Muryasov R. R., “Polnota eksponentsialnykh sistem v prostranstvakh funktsii v terminakh perimetra”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 227 (2023), 79–91

[9] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980

[10] Khabibullin B. N., Khabibullin F. B., “Zeros of holomorphic functions in the unit disk and $\rho$-trigonometrically convex functions”, Anal. Math. Phys., 9:3 (2019), 1087–1098 | DOI | MR | Zbl

[11] Khabibullin B. N., Khabibullin F. B., “Zeros of holomorphic functions in the unit ball and subspherical functions”, Lobachevskii J. Math., 40:5 (2019), 648–659 | DOI | MR | Zbl

[12] Ransford Th., Potential Theory in the Complex Plane, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[13] Roberts A. W., Varberg D. E., Convex Functions, Academic Press, New York–London, 1973 | MR | Zbl