Solution of one control problem for a dynamical system in partial derivatives
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 97-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a second-order dynamic system in partial derivatives with three boundary conditions, the problem of constructing control and state functions in analytical form is solved by the cascade decomposition method. Two criteria of complete controllability are obtained. The first criterion is based on the surjectivity property of a certain matrix. The second criterion is identical to the Kalman criterion. A class of functions is identified that determine the analytical form of control and state functions. A method for constructing control and state functions in analytical form is developed.
Keywords: dynamic system with partial derivatives, complete controllability, program control, cascade decomposition method
@article{INTO_2024_235_a8,
     author = {E. V. Raetskaya},
     title = {Solution of one control problem for a dynamical system in partial derivatives},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {97--108},
     publisher = {mathdoc},
     volume = {235},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_235_a8/}
}
TY  - JOUR
AU  - E. V. Raetskaya
TI  - Solution of one control problem for a dynamical system in partial derivatives
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 97
EP  - 108
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_235_a8/
LA  - ru
ID  - INTO_2024_235_a8
ER  - 
%0 Journal Article
%A E. V. Raetskaya
%T Solution of one control problem for a dynamical system in partial derivatives
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 97-108
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_235_a8/
%G ru
%F INTO_2024_235_a8
E. V. Raetskaya. Solution of one control problem for a dynamical system in partial derivatives. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 97-108. http://geodesic.mathdoc.fr/item/INTO_2024_235_a8/

[1] Andreev Yu. N., Upravlenie konechnomernymi lineinymi ob'ektami, Nauka, M., 1976

[2] Zubov V. I., Lektsii po teorii upravleniya, Nauka, M., 1975

[3] Zubova S. P., “Reshenie obratnykh zadach dlya lineinykh dinamicheskikh sistem kaskadnym metodom”, Dokl. RAN., 447:6 (2012), 599–602 | Zbl

[4] Zubova S. P., Raetskaya E. V., “Postroenie upravleniya dlya polucheniya zadannogo vykhoda v sisteme nablyudeniya”, Vestn. Tambov. un-ta. Ser. Estestv. tekhn. nauki., 20:5 (2015), 1400–1408

[5] Zubova S. P., Raetskaya E. V., “Ob invariantnosti nestatsionarnoi sistemy nablyudeniya otnositelno nekotorykh vozmuschenii”, Vestn. Tambov. un-ta. Ser. Estestv. tekhn. nauki., 25:6 (2010), 1678–1679

[6] Kalman R. E., Ob obschei teorii sistem upravleniya, Izd-vo AN SSSR, M., 1960

[7] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968

[8] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961 | MR

[9] Raetskaya E. V., Uslovnaya upravlyaemost i nablyudamost lineinykh sistem, Diss. na soisk. uch. step. kand. fiz.-mat. nauk, VGU, Voronezh, 2004

[10] Raetskaya E. V., “Issledovanie singulyarno vozmuschennoi sistemy upravleniya”, Vestn. Tambov. un-ta. Ser. Estestv. tekhn. nauki., 23:122 (2018), 303–307

[11] Raetskaya E. V., “Algoritm postroeniya upravleniya dinamicheskoi sistemoi v chastnykh proizvodnykh”, Model. sist. protsessov., 15:4 (2022), 116–127

[12] Raetskaya E. V., “Algoritm postroeniya polinomialnogo resheniya zadachi programmnogo upravleniya dlya dinamicheskoi sistemy v chastnykh proizvodnykh”, Model. sist. protsessov., 16:3 (2023), 94–104

[13] Raetskaya E. V., “Strukturnyi analiz funktsii upravleniya dinamicheskoi sistemoi v chastnykh proizvodnykh”, Model. sist. protsessov., 16:1 (2023), 93–104

[14] Raetskaya E. V., “Obschaya skhema postroeniya opredelyayuschei funktsii v zadache upravleniya dlya dinamicheskoi sistemy v chastnykh proizvodnykh raznogo poryadka”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 232 (2024), 78–88 | MR

[15] Uonem M., Lineinye mnogomernye sistemy upravleniya, Nauka, M., 1980 | MR

[16] Zubova S. P., Raetskaya E. V., “A study of the rigidity of descriptor dynamical systems in a Banach space”, J. Math. Sci., 208:1 (2015), 119–124 | DOI | MR | Zbl

[17] Zubova S. P., Raetskaya E. V., “Invariance of a nonstationary observability system under certain perturbations”, J. Math. Sci., 188:3 (2013), 218–226 | DOI | MR | Zbl

[18] Zubova S. P., Raetskaya E. V., “Solution of the multi-point control problem for a dynamic system in partial derivatives”, Math. Meth. Appl. Sci., 44:15 (2021), 11998–12009 | DOI | MR | Zbl

[19] Zubova S. P., Raetskaya E. V., “Control problem for dynamical systems with partial derivatives”, J. Math. Sci., 249:6 (2021), 11998–12009 | MR

[20] Zubova S. P., Raetskaya E. V., “Construction of Control Providing the Desired Output of the Linear Dynamic System”, Automat. Remote Control., 79:5 (2018), 774–791 | DOI | MR

[21] Zubova S. P., Raetskaya E. V., “Algorithm to solve linear multipoint problems of control by the method of cascade decomposition”, Automat. Remote Control., 78:7 (2017), 1189–1202 | DOI | MR | Zbl

[22] Zubova S. P., Trung L. H., Raetskaya E. V., “On polinomial solutions of the linear stationary control system”, Automat. Remote Control., 69:11 (2008), 1852–1858 | DOI | MR