Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_235_a8, author = {E. V. Raetskaya}, title = {Solution of one control problem for a dynamical system in partial derivatives}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {97--108}, publisher = {mathdoc}, volume = {235}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_235_a8/} }
TY - JOUR AU - E. V. Raetskaya TI - Solution of one control problem for a dynamical system in partial derivatives JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 97 EP - 108 VL - 235 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_235_a8/ LA - ru ID - INTO_2024_235_a8 ER -
%0 Journal Article %A E. V. Raetskaya %T Solution of one control problem for a dynamical system in partial derivatives %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 97-108 %V 235 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_235_a8/ %G ru %F INTO_2024_235_a8
E. V. Raetskaya. Solution of one control problem for a dynamical system in partial derivatives. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 97-108. http://geodesic.mathdoc.fr/item/INTO_2024_235_a8/
[1] Andreev Yu. N., Upravlenie konechnomernymi lineinymi ob'ektami, Nauka, M., 1976
[2] Zubov V. I., Lektsii po teorii upravleniya, Nauka, M., 1975
[3] Zubova S. P., “Reshenie obratnykh zadach dlya lineinykh dinamicheskikh sistem kaskadnym metodom”, Dokl. RAN., 447:6 (2012), 599–602 | Zbl
[4] Zubova S. P., Raetskaya E. V., “Postroenie upravleniya dlya polucheniya zadannogo vykhoda v sisteme nablyudeniya”, Vestn. Tambov. un-ta. Ser. Estestv. tekhn. nauki., 20:5 (2015), 1400–1408
[5] Zubova S. P., Raetskaya E. V., “Ob invariantnosti nestatsionarnoi sistemy nablyudeniya otnositelno nekotorykh vozmuschenii”, Vestn. Tambov. un-ta. Ser. Estestv. tekhn. nauki., 25:6 (2010), 1678–1679
[6] Kalman R. E., Ob obschei teorii sistem upravleniya, Izd-vo AN SSSR, M., 1960
[7] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968
[8] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961 | MR
[9] Raetskaya E. V., Uslovnaya upravlyaemost i nablyudamost lineinykh sistem, Diss. na soisk. uch. step. kand. fiz.-mat. nauk, VGU, Voronezh, 2004
[10] Raetskaya E. V., “Issledovanie singulyarno vozmuschennoi sistemy upravleniya”, Vestn. Tambov. un-ta. Ser. Estestv. tekhn. nauki., 23:122 (2018), 303–307
[11] Raetskaya E. V., “Algoritm postroeniya upravleniya dinamicheskoi sistemoi v chastnykh proizvodnykh”, Model. sist. protsessov., 15:4 (2022), 116–127
[12] Raetskaya E. V., “Algoritm postroeniya polinomialnogo resheniya zadachi programmnogo upravleniya dlya dinamicheskoi sistemy v chastnykh proizvodnykh”, Model. sist. protsessov., 16:3 (2023), 94–104
[13] Raetskaya E. V., “Strukturnyi analiz funktsii upravleniya dinamicheskoi sistemoi v chastnykh proizvodnykh”, Model. sist. protsessov., 16:1 (2023), 93–104
[14] Raetskaya E. V., “Obschaya skhema postroeniya opredelyayuschei funktsii v zadache upravleniya dlya dinamicheskoi sistemy v chastnykh proizvodnykh raznogo poryadka”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 232 (2024), 78–88 | MR
[15] Uonem M., Lineinye mnogomernye sistemy upravleniya, Nauka, M., 1980 | MR
[16] Zubova S. P., Raetskaya E. V., “A study of the rigidity of descriptor dynamical systems in a Banach space”, J. Math. Sci., 208:1 (2015), 119–124 | DOI | MR | Zbl
[17] Zubova S. P., Raetskaya E. V., “Invariance of a nonstationary observability system under certain perturbations”, J. Math. Sci., 188:3 (2013), 218–226 | DOI | MR | Zbl
[18] Zubova S. P., Raetskaya E. V., “Solution of the multi-point control problem for a dynamic system in partial derivatives”, Math. Meth. Appl. Sci., 44:15 (2021), 11998–12009 | DOI | MR | Zbl
[19] Zubova S. P., Raetskaya E. V., “Control problem for dynamical systems with partial derivatives”, J. Math. Sci., 249:6 (2021), 11998–12009 | MR
[20] Zubova S. P., Raetskaya E. V., “Construction of Control Providing the Desired Output of the Linear Dynamic System”, Automat. Remote Control., 79:5 (2018), 774–791 | DOI | MR
[21] Zubova S. P., Raetskaya E. V., “Algorithm to solve linear multipoint problems of control by the method of cascade decomposition”, Automat. Remote Control., 78:7 (2017), 1189–1202 | DOI | MR | Zbl
[22] Zubova S. P., Trung L. H., Raetskaya E. V., “On polinomial solutions of the linear stationary control system”, Automat. Remote Control., 69:11 (2008), 1852–1858 | DOI | MR