Investigation of periodic solutions of a two-dimensional system of nonlinear ordinary second-order differential equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 87-96
Voir la notice du chapitre de livre
The problem of a priori estimate and existence of periodic solutions for a two-dimensional system of nonlinear ordinary second-order differential equations is examined. In terms of the properties of the principal nonlinear part, a theorem on a priori estimate of periodic solutions is formulated and proved. Under the conditions of the a priori estimate, a theorem on necessary and sufficient conditions for the existence of periodic solutions is proved.
Keywords:
periodic solution, positive homogeneous mapping, a priori estimate, vector field, degree of a vector field, homotopic pairs of mappings
@article{INTO_2024_235_a7,
author = {A. N. Naimov and M. V. Bystretskii},
title = {Investigation of periodic solutions of a two-dimensional system of nonlinear ordinary second-order differential equations},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {87--96},
year = {2024},
volume = {235},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2024_235_a7/}
}
TY - JOUR AU - A. N. Naimov AU - M. V. Bystretskii TI - Investigation of periodic solutions of a two-dimensional system of nonlinear ordinary second-order differential equations JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 87 EP - 96 VL - 235 UR - http://geodesic.mathdoc.fr/item/INTO_2024_235_a7/ LA - ru ID - INTO_2024_235_a7 ER -
%0 Journal Article %A A. N. Naimov %A M. V. Bystretskii %T Investigation of periodic solutions of a two-dimensional system of nonlinear ordinary second-order differential equations %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 87-96 %V 235 %U http://geodesic.mathdoc.fr/item/INTO_2024_235_a7/ %G ru %F INTO_2024_235_a7
A. N. Naimov; M. V. Bystretskii. Investigation of periodic solutions of a two-dimensional system of nonlinear ordinary second-order differential equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 87-96. http://geodesic.mathdoc.fr/item/INTO_2024_235_a7/
[1] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975
[2] Mukhamadiev E., Naimov A. N., “O razreshimosti periodicheskoi zadachi dlya sistemy nelineinykh obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, Differ. uravn., 60:3 (2024), 312–321 | DOI
[3] Mukhamadiev E., Naimov A. N., Kobilzoda M. M., “O razreshimosti odnogo klassa periodicheskikh zadach na ploskosti”, Differ. uravn., 57:2 (2021), 203–209 | DOI | MR | Zbl