Applying Laguerre's function for approximate calculation of Green's function of a second-order differential equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 57-67
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the equation $\ddot x(t)=Ax(t)+f(t)$, $t\in\mathbb{R}$, with the matrix coefficient $A$. This equation has a unique solution $x$, which is bounded on $\mathbb{R}$, for any continuous bounded inhomogeneity $f$ if and only if the spectrum of the matrix $A$ does not intersect the semi-axis $\mathbb{R}_-=\{z\in\mathbb{R}: z\le0\}$. In this case, the solution $x$ is defined by the formula
\begin{equation*}
x(t)=\int_{-\infty}^{+\infty}G(t-s)f(s)\,ds, \quad
G(t)=-\frac12 e^{-\sqrt{A}|t|}(\sqrt{A})^{-1}.
\end{equation*}
We discuss the problem of approximate calculation of Green's function $G(t)$ using its expansion into Laguerre's series. The scale parameter $\tau$ in Laguerre's polynomials is chosen to ensure the highest accuracy.
Mots-clés :
Laguerre's polynomials
Keywords: orthogonal series, Green's function, bounded solutions problem, optimization, scale parameter
Keywords: orthogonal series, Green's function, bounded solutions problem, optimization, scale parameter
@article{INTO_2024_235_a4,
author = {V. G. Kurbatov and E. D. Khoroshikh and V. Yu. Chursin},
title = {Applying {Laguerre's} function for approximate calculation of {Green's} function of a second-order differential equation},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {57--67},
publisher = {mathdoc},
volume = {235},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2024_235_a4/}
}
TY - JOUR AU - V. G. Kurbatov AU - E. D. Khoroshikh AU - V. Yu. Chursin TI - Applying Laguerre's function for approximate calculation of Green's function of a second-order differential equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 57 EP - 67 VL - 235 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_235_a4/ LA - ru ID - INTO_2024_235_a4 ER -
%0 Journal Article %A V. G. Kurbatov %A E. D. Khoroshikh %A V. Yu. Chursin %T Applying Laguerre's function for approximate calculation of Green's function of a second-order differential equation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 57-67 %V 235 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_235_a4/ %G ru %F INTO_2024_235_a4
V. G. Kurbatov; E. D. Khoroshikh; V. Yu. Chursin. Applying Laguerre's function for approximate calculation of Green's function of a second-order differential equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 57-67. http://geodesic.mathdoc.fr/item/INTO_2024_235_a4/