Applying Laguerre's function for approximate calculation of Green's function of a second-order differential equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 57-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the equation $\ddot x(t)=Ax(t)+f(t)$, $t\in\mathbb{R}$, with the matrix coefficient $A$. This equation has a unique solution $x$, which is bounded on $\mathbb{R}$, for any continuous bounded inhomogeneity $f$ if and only if the spectrum of the matrix $A$ does not intersect the semi-axis $\mathbb{R}_-=\{z\in\mathbb{R}: z\le0\}$. In this case, the solution $x$ is defined by the formula \begin{equation*} x(t)=\int_{-\infty}^{+\infty}G(t-s)f(s)\,ds, \quad G(t)=-\frac12 e^{-\sqrt{A}|t|}(\sqrt{A})^{-1}. \end{equation*} We discuss the problem of approximate calculation of Green's function $G(t)$ using its expansion into Laguerre's series. The scale parameter $\tau$ in Laguerre's polynomials is chosen to ensure the highest accuracy.
Mots-clés : Laguerre's polynomials
Keywords: orthogonal series, Green's function, bounded solutions problem, optimization, scale parameter
@article{INTO_2024_235_a4,
     author = {V. G. Kurbatov and E. D. Khoroshikh and V. Yu. Chursin},
     title = {Applying {Laguerre's} function for approximate calculation of {Green's} function of a second-order differential equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {57--67},
     publisher = {mathdoc},
     volume = {235},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_235_a4/}
}
TY  - JOUR
AU  - V. G. Kurbatov
AU  - E. D. Khoroshikh
AU  - V. Yu. Chursin
TI  - Applying Laguerre's function for approximate calculation of Green's function of a second-order differential equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 57
EP  - 67
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_235_a4/
LA  - ru
ID  - INTO_2024_235_a4
ER  - 
%0 Journal Article
%A V. G. Kurbatov
%A E. D. Khoroshikh
%A V. Yu. Chursin
%T Applying Laguerre's function for approximate calculation of Green's function of a second-order differential equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 57-67
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_235_a4/
%G ru
%F INTO_2024_235_a4
V. G. Kurbatov; E. D. Khoroshikh; V. Yu. Chursin. Applying Laguerre's function for approximate calculation of Green's function of a second-order differential equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 57-67. http://geodesic.mathdoc.fr/item/INTO_2024_235_a4/

[1] Borovskikh A. V., Perov A. I., Lektsii po obyknovennym differentsialnym uravneniyam, RKhD, M.–Izhevsk, 2004

[2] Budak B. M., Fomin S. V., Kratnye integraly i ryady, Nauka, M., 1967 | MR

[3] Godunov S. K., Obyknovennye differentsialnye uravneniya s postoyannymi koeffitsientami, Izd-vo Novosibirsk. un-ta, Novosibirsk, 1994 | MR

[4] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[5] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[6] Kurbatov V. G., Kurbatova I. V., Vychislitelnye metody spektralnoi teorii, Izd. dom VGU, Voronezh, 2022

[7] Kurbatov V. G., Khoroshikh E. D., “Primenenie funktsii Lagerra dlya vychisleniya impulsnoi kharakteristiki”, Vestn. Voronezh. gos. un-ta. Ser. Fiz.-mat. nauki., 2024, no. 1, 39–49

[8] Lebedev N. N., Spetsialnye funktsii i ikh prilozheniya, GIFML, M.-L., 1963

[9] Levitan B. P., Zhikov V. V., Pochti-periodicheskie funktsii i differentsialnye uravneniya, Izd-vo MGU, M., 1978

[10] Nikiforov A. F., Uvarov V. B., Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1985 | MR

[11] Massera Kh., Sheffer Kh., Lineinye differentsialnye uravneniya i funktsionalnye prostranstva, Mir, M., 1970

[12] Prokhorov S. A., Kulikovskikh I. M., “Uslovie optimalnosti filtrov Meiksnera”, Zh. radioelektron., 2015, no. 4, 1–14

[13] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[14] Sege G., Ortogonalnye mnogochleny, GIFML, M.-L., 1962

[15] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979 | MR

[16] Khoroshikh E. D., “Razlozhenie funktsii Grina zadachi ob ogranichennykh resheniyakh v ryad po funktsiyam Lagerra”, Sb. tr. Mezhvuz. nauch. konf. «Matematika, informatsionnye tekhnologii, prilozheniya» (Voronezh, 27 aprelya 2023), Nauchnaya kniga, Voronezh, 2023, 514–520

[17] Chursin V. Yu., “Funktsiya Grina zadachi ob ogranichennykh resheniyakh dlya differentsialnogo uravneniya vtorogo poryadka”, Vestn. f-ta prikl. mat., inform. mekh. Voronezh. gos. un-ta., 17 (2024), 141–151

[18] Belt H. J. W., den Brinker A. C., “Optimal parametrization of truncated generalized Laguerre series”, Proc. 1997 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (Munich, Germany, April 21-24, 1997), v. 5, IEEE Computer Society Press, Los Alamitos, California, 1997, 3805-3808

[19] Clowes G. J., “Choice of the time-scaling factor for linear system approximation using orthonormal {L}aguerre functions”, IEEE Trans. Automat. Control., 10 (1965), 487–489 | DOI

[20] Higham N. J., Functions of matrices: Theory and computation, SIAM, Philadelphia, PA, 2008 | DOI | MR | Zbl

[21] Khoroshikh E. D., Kurbatov V. G., An approximation of matrix exponential by a truncated Laguerre series, arXiv: 2312.07291

[22] Moore G., “Orthogonal polynomial expansions for the matrix exponential”, Linear Algebra Appl., 435:3 (2011), 537–559 | DOI | MR | Zbl

[23] Terekhov A. V., Preconditioning for time-harmonic {M}axwell's equations using the Laguerre transform, arXiv: 2309.11023

[24] Wolfram S., The Mathematica Book, Wolfram Media, New York, 2003 | MR