Applying Laguerre's function for approximate calculation of Green's function of a second-order differential equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 57-67

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the equation $\ddot x(t)=Ax(t)+f(t)$, $t\in\mathbb{R}$, with the matrix coefficient $A$. This equation has a unique solution $x$, which is bounded on $\mathbb{R}$, for any continuous bounded inhomogeneity $f$ if and only if the spectrum of the matrix $A$ does not intersect the semi-axis $\mathbb{R}_-=\{z\in\mathbb{R}: z\le0\}$. In this case, the solution $x$ is defined by the formula \begin{equation*} x(t)=\int_{-\infty}^{+\infty}G(t-s)f(s)\,ds, \quad G(t)=-\frac12 e^{-\sqrt{A}|t|}(\sqrt{A})^{-1}. \end{equation*} We discuss the problem of approximate calculation of Green's function $G(t)$ using its expansion into Laguerre's series. The scale parameter $\tau$ in Laguerre's polynomials is chosen to ensure the highest accuracy.
Mots-clés : Laguerre's polynomials
Keywords: orthogonal series, Green's function, bounded solutions problem, optimization, scale parameter
@article{INTO_2024_235_a4,
     author = {V. G. Kurbatov and E. D. Khoroshikh and V. Yu. Chursin},
     title = {Applying {Laguerre's} function for approximate calculation of {Green's} function of a second-order differential equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {57--67},
     publisher = {mathdoc},
     volume = {235},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_235_a4/}
}
TY  - JOUR
AU  - V. G. Kurbatov
AU  - E. D. Khoroshikh
AU  - V. Yu. Chursin
TI  - Applying Laguerre's function for approximate calculation of Green's function of a second-order differential equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 57
EP  - 67
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_235_a4/
LA  - ru
ID  - INTO_2024_235_a4
ER  - 
%0 Journal Article
%A V. G. Kurbatov
%A E. D. Khoroshikh
%A V. Yu. Chursin
%T Applying Laguerre's function for approximate calculation of Green's function of a second-order differential equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 57-67
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_235_a4/
%G ru
%F INTO_2024_235_a4
V. G. Kurbatov; E. D. Khoroshikh; V. Yu. Chursin. Applying Laguerre's function for approximate calculation of Green's function of a second-order differential equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 57-67. http://geodesic.mathdoc.fr/item/INTO_2024_235_a4/